CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
Biosens Bioelectron. 2022 Jun 1;205:114111. doi: 10.1016/j.bios.2022.114111. Epub 2022 Feb 21.
There is an urgent need for developing electrochemical biosensor based on the acetylcholinesterase (AChE) inhibition to real-time analysis of organophosphorus pesticides (OPs), but it is suffered from the sluggish electrode kinetics and high oxidation potential toward signal species. Herein, a nanocomposite of ultrafine Cu quantum dots (QD) uniformly loaded on three-dimensional ultrathin graphdiyne (GDY) nanosheets (denoted as Cu@GDY) was synthesized via a one-step strategy, which showing high-density of active sites with persistent stability. Then an AChE biosensor based on Cu@GDY was fabricated to detect OPs, and the results revealed that the Cu@GDY nanocomposite can significantly amplifies electrochemical signal and reduces the oxidation potential for OPs. The strong interaction between active site of Cu@GDY and thiocholine signal species caused rapid analyte aggregation and decreased the reaction activation energy of thiocholine electro-oxidation. Benefiting from the excellent catalytic activity of Cu@GDY nanocomposite and reasonable regulation of enzyme inhibition kinetics, the biosensor achieved rapid and sensitive detection of OPs with a detection limit of 1 μg L for paraoxon. Furthermore, the biosensor demonstrated great reproducibility, good stability and high recovery rate for OPs detection in real samples. Cu@GDY based sensor also displayed high catalytic activities and good selectivity to the non-enzymatic detection of glucose in alkaline medium. Cu@GDY offers a versatile and promising platform for sensors and biosensors featuring remarkably enhanced activity and stability, and can be applied to many other fields as desirable electrocatalyst.
目前迫切需要开发基于乙酰胆碱酯酶(AChE)抑制作用的电化学生物传感器,用于实时分析有机磷农药(OPs),但它受到电极动力学缓慢和信号物质氧化电位高的限制。在此,通过一步策略合成了超精细 Cu 量子点(QD)均匀负载在三维超薄石墨炔(GDY)纳米片上的纳米复合材料(记为 Cu@GDY),其具有高密度的活性位点和持久的稳定性。然后,基于 Cu@GDY 构建了一种 AChE 生物传感器来检测 OPs,结果表明,Cu@GDY 纳米复合材料可以显著放大电化学信号并降低 OPs 的氧化电位。Cu@GDY 的活性位点与硫代胆碱信号物质之间的强烈相互作用导致分析物快速聚集,并降低了硫代胆碱电氧化的反应活化能。得益于 Cu@GDY 纳米复合材料的优异催化活性和对酶抑制动力学的合理调节,该生物传感器实现了对 OPs 的快速灵敏检测,对马拉硫磷的检测限低至 1μg/L。此外,该生物传感器在实际样品中对 OPs 的检测表现出良好的重现性、稳定性和高回收率。基于 Cu@GDY 的传感器在碱性介质中非酶检测葡萄糖时也表现出高催化活性和良好的选择性。Cu@GDY 为传感器和生物传感器提供了一个通用且有前途的平台,具有显著增强的活性和稳定性,并且可以作为理想的电催化剂应用于许多其他领域。