College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China.
Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
Med Image Anal. 2022 May;78:102389. doi: 10.1016/j.media.2022.102389. Epub 2022 Feb 18.
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution, ambiguous borders and complicated shapes, existing methods suffer from the degradation of accuracy and robustness in cardiac MRI segmentation. In this paper, we propose an enhanced Deformable U-Net (DeU-Net) for 3D cardiac cine MRI segmentation, composed of three modules, namely Temporal Deformable Aggregation Module (TDAM), Enhanced Deformable Attention Network (EDAN), and Probabilistic Noise Correction Module (PNCM). TDAM first takes consecutive cardiac MR slices (including a target slice and its neighboring reference slices) as input, and extracts spatio-temporal information by an offset prediction network to generate fused features of the target slice. Then the fused features are also fed into EDAN that exploits several flexible deformable convolutional layers and generates clear borders of every segmentation map. A Multi-Scale Attention Module (MSAM) in EDAN is proposed to capture long range dependencies between features of different scales. Meanwhile, PNCM treats the fused features as a distribution to quantify uncertainty. Experimental results show that our DeU-Net achieves the state-of-the-art performance in terms of the commonly used evaluation metrics on the Extended ACDC dataset and competitive performance on other two datasets, validating the robustness and generalization of DeU-Net.
自动分割心脏磁共振成像 (MRI) 有助于在临床应用中实现高效、准确的体积测量。然而,由于各向异性分辨率、边界不明确和形状复杂,现有的方法在心脏 MRI 分割中存在准确性和鲁棒性下降的问题。在本文中,我们提出了一种用于 3D 心脏电影 MRI 分割的增强型可变形 U-Net (DeU-Net),它由三个模块组成,分别是时间可变形聚合模块 (TDAM)、增强型可变形注意力网络 (EDAN) 和概率噪声校正模块 (PNCM)。TDAM 首先以连续的心脏磁共振切片 (包括目标切片及其相邻的参考切片) 作为输入,通过偏移预测网络提取时空信息,生成目标切片的融合特征。然后,融合特征也被输入到 EDAN 中,该模块利用几个灵活的可变形卷积层生成每个分割图的清晰边界。EDAN 中的多尺度注意力模块 (MSAM) 用于捕获不同尺度特征之间的长程依赖关系。同时,PNCM 将融合特征视为分布,以量化不确定性。实验结果表明,我们的 DeU-Net 在扩展的 ACDC 数据集上的常用评估指标方面达到了最先进的性能,在其他两个数据集上也具有竞争力,验证了 DeU-Net 的鲁棒性和泛化能力。