HeartFlow, Inc., USA; Biomedical Image Analysis Group, Imperial College London, UK.
HeartFlow, Inc., USA; Biomedical Image Analysis Group, Imperial College London, UK.
Med Image Anal. 2022 May;78:102383. doi: 10.1016/j.media.2022.102383. Epub 2022 Feb 10.
Deep learning models for semantic segmentation are able to learn powerful representations for pixel-wise predictions, but are sensitive to noise at test time and may lead to implausible topologies. Image registration models on the other hand are able to warp known topologies to target images as a means of segmentation, but typically require large amounts of training data, and have not widely been benchmarked against pixel-wise segmentation models. We propose the Atlas Image-and-Spatial Transformer Network (Atlas-ISTN), a framework that jointly learns segmentation and registration on 2D and 3D image data, and constructs a population-derived atlas in the process. Atlas-ISTN learns to segment multiple structures of interest and to register the constructed atlas labelmap to an intermediate pixel-wise segmentation. Additionally, Atlas-ISTN allows for test time refinement of the model's parameters to optimize the alignment of the atlas labelmap to an intermediate pixel-wise segmentation. This process both mitigates for noise in the target image that can result in spurious pixel-wise predictions, as well as improves upon the one-pass prediction of the model. Benefits of the Atlas-ISTN framework are demonstrated qualitatively and quantitatively on 2D synthetic data and 3D cardiac computed tomography and brain magnetic resonance image data, out-performing both segmentation and registration baseline models. Atlas-ISTN also provides inter-subject correspondence of the structures of interest.
深度学习模型在语义分割方面能够学习到用于像素级预测的强大表示,但在测试时对噪声敏感,并且可能导致不合理的拓扑结构。另一方面,图像配准模型能够将已知的拓扑结构扭曲到目标图像作为分割的一种手段,但通常需要大量的训练数据,并且尚未广泛针对像素级分割模型进行基准测试。我们提出了 Atlas 图像和空间变换网络(Atlas-ISTN),这是一个联合学习 2D 和 3D 图像数据上的分割和配准的框架,并在此过程中构建了一个基于群体的图谱。Atlas-ISTN 学习分割多个感兴趣的结构,并将构建的图谱标签映射到中间像素级分割。此外,Atlas-ISTN 允许在测试时对模型的参数进行细化,以优化图谱标签映射到中间像素级分割的对齐。该过程既减轻了目标图像中的噪声可能导致虚假像素级预测的问题,又改进了模型的一次性预测。在 2D 合成数据和 3D 心脏计算机断层扫描和脑磁共振图像数据上,对 Atlas-ISTN 框架的优点进行了定性和定量的演示,优于分割和配准基线模型。Atlas-ISTN 还提供了感兴趣结构的跨个体对应关系。