State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
Adv Sci (Weinh). 2022 Apr;9(12):e2103902. doi: 10.1002/advs.202103902. Epub 2022 Feb 27.
With the rapid evolution of microelectronics and nanofabrication technologies, the feature sizes of large-scale integrated circuits continue to move toward the nanoscale. There is a strong need to improve the quality and efficiency of integrated circuit inspection, but it remains a great challenge to provide both rapid imaging and circuit node-level high-resolution images simultaneously using a conventional microscope. This paper proposes a nondestructive, high-throughput, multiscale correlation imaging method that combines atomic force microscopy (AFM) with microlens-based scanning optical microscopy. In this method, a microlens is coupled to the end of the AFM cantilever and the sample-facing side of the microlens contains a focused ion beam deposited tip which serves as the AFM scanning probe. The introduction of a microlens improves the imaging resolution of the AFM optical system, providing a 3-4× increase in optical imaging magnification while the scanning imaging throughput is improved ≈8×. The proposed method bridges the resolution gap between traditional optical imaging and AFM, achieves cross-scale rapid imaging with micrometer to nanometer resolution, and improves the efficiency of AFM-based large-scale imaging and detection. Simultaneously, nanoscale-level correlation between the acquired optical image and structure information is enabled by the method, providing a powerful tool for semiconductor device inspection.
随着微电子学和纳米制造技术的飞速发展,大规模集成电路的特征尺寸不断向纳米尺度推进。因此,人们强烈需要提高集成电路检测的质量和效率,但使用传统显微镜同时提供快速成像和电路节点级高分辨率图像仍然是一个巨大的挑战。本文提出了一种无损、高通量、多尺度相关成像方法,该方法结合原子力显微镜(AFM)和基于微透镜的扫描光学显微镜。在该方法中,将微透镜耦合到 AFM 悬臂的末端,并且微透镜面向样品的一侧包含聚焦离子束沉积的尖端,该尖端用作 AFM 扫描探针。微透镜的引入提高了 AFM 光学系统的成像分辨率,提供了 3-4 倍的光学成像放大倍数,同时扫描成像通量提高了 ≈8 倍。所提出的方法弥合了传统光学成像和 AFM 之间的分辨率差距,实现了从微米到纳米分辨率的跨尺度快速成像,并提高了基于 AFM 的大规模成像和检测的效率。同时,该方法还能够实现所获取的光学图像和结构信息之间的纳米级相关性,为半导体器件检测提供了强大的工具。