Suppr超能文献

利用脉冲 EPR 光谱法测定完全氘代 RNA 中的长程距离。

Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy.

机构信息

Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt, Germany.

Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 10086, China.

出版信息

Biophys J. 2022 Jan 4;121(1):37-43. doi: 10.1016/j.bpj.2021.12.007. Epub 2021 Dec 8.

Abstract

Pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy is powerful in structure and dynamics study of biological macromolecules by providing distance distribution information ranging from 1.8 to 6 nm, providing that the biomolecules are site-specifically labeled with paramagnetic tags. However, long distances up to 16 nm have been measured on perdeuterated and spin-labeled proteins in deuterated solvent by PELDOR. Here we demonstrate long-range distance measurement on a large RNA, the 97-nucleotide 3'SL RNA element of the Dengue virus 2 genome, by combining a posttranscriptional site-directed spin labeling method using an unnatural basepair system with RNA perdeuteration by enzymatic synthesis using deuterated nucleotides. The perdeuteration removes the coupling of the electron spins of the nitroxide spin labels from the proton nuclear spin system of the RNA and does extend the observation time windows of PELDOR up to 50 μs. This enables one to determine long distances up to 14 nm for large RNAs and their conformational flexibility.

摘要

脉冲电子-电子双共振(PELDOR 或 DEER)光谱学通过提供 1.8 至 6nm 的距离分布信息,在生物大分子的结构和动力学研究中具有强大的作用,前提是生物分子被特异性地用顺磁标记物标记。然而,通过 PELDOR,已经在氘代溶剂中对经过氘代和自旋标记的蛋白质进行了长达 16nm 的长距离测量。在这里,我们通过结合使用非天然碱基对系统的转录后定点自旋标记方法和使用氘代核苷酸进行酶促合成的 RNA 氘代,展示了对大型 RNA 的远距离测量,即登革热病毒 2 基因组的 97 个核苷酸 3'SL RNA 元件。氘代消除了来自 RNA 质子核自旋系统的氮氧自由基自旋标记电子自旋的耦合,并将 PELDOR 的观察时间窗口延长至 50μs。这使得能够确定长达 14nm 的大型 RNA 及其构象灵活性的长距离。

相似文献

1
Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy.
Biophys J. 2022 Jan 4;121(1):37-43. doi: 10.1016/j.bpj.2021.12.007. Epub 2021 Dec 8.
2
PELDOR Measurements on Nitroxide-Labeled Oligonucleotides.
Methods Mol Biol. 2022;2439:241-274. doi: 10.1007/978-1-0716-2047-2_16.
3
Nitroxide spin labeled RNA for long range distance measurements by EPR-PELDOR.
Nucleic Acids Symp Ser (Oxf). 2008(52):153-4. doi: 10.1093/nass/nrn078.
6
The spatial effect of protein deuteration on nitroxide spin-label relaxation: implications for EPR distance measurement.
J Magn Reson. 2014 Nov;248:36-41. doi: 10.1016/j.jmr.2014.09.010. Epub 2014 Sep 28.

引用本文的文献

2
Advances in solid-state NMR methods for studying RNA structures and dynamics.
Magn Reson Lett. 2024 Apr 26;5(1):200133. doi: 10.1016/j.mrl.2024.200133. eCollection 2025 Feb.
3
Recent advances in quantifying protein conformational ensembles with dipolar EPR spectroscopy.
Curr Opin Struct Biol. 2025 Aug 23;94:103139. doi: 10.1016/j.sbi.2025.103139.
4
ih-RIDME: a pulse EPR experiment to probe the heterogeneous nuclear environment.
Magn Reson (Gott). 2025 Mar 10;6(1):93-112. doi: 10.5194/mr-6-93-2025. eCollection 2025.
5
Pulsed Dipolar EPR for Self-Limited Complexes of Oligonucleotides Studies.
Biomolecules. 2024 Jul 23;14(8):887. doi: 10.3390/biom14080887.
6
Quantification of Distributions of Local Proton Concentrations in Heterogeneous Soft Matter and Non-Anfinsen Biomacromolecules.
J Phys Chem Lett. 2024 May 30;15(21):5625-5632. doi: 10.1021/acs.jpclett.4c00825. Epub 2024 May 17.
7
Direct Comparison between Förster Resonance Energy Transfer and Light-Induced Triplet-Triplet Electron Resonance Spectroscopy.
J Am Chem Soc. 2023 Oct 25;145(42):22859-22865. doi: 10.1021/jacs.3c04685. Epub 2023 Oct 15.
9
The use of EPR spectroscopy to study transcription mechanisms.
Biophys Rev. 2022 Oct 25;14(5):1141-1159. doi: 10.1007/s12551-022-01004-x. eCollection 2022 Oct.
10

本文引用的文献

2
Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules.
J Am Chem Soc. 2021 Nov 3;143(43):17875-17890. doi: 10.1021/jacs.1c07371. Epub 2021 Oct 19.
3
Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions.
Chem Sci. 2020 Aug 20;11(35):9655-9664. doi: 10.1039/d0sc01717e. eCollection 2020 Sep 21.
4
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22823-22832. doi: 10.1073/pnas.2005217117. Epub 2020 Aug 31.
5
Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures.
Nat Methods. 2020 Jul;17(7):699-707. doi: 10.1038/s41592-020-0878-9. Epub 2020 Jul 2.
6
Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals.
J Phys Chem Lett. 2020 May 7;11(9):3396-3400. doi: 10.1021/acs.jpclett.0c00768. Epub 2020 Apr 17.
7
EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription.
Angew Chem Int Ed Engl. 2020 May 11;59(20):7891-7896. doi: 10.1002/anie.201916447. Epub 2020 Mar 13.
8
Long non-coding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution.
EMBO Rep. 2019 Nov 5;20(11):e47016. doi: 10.15252/embr.201847016. Epub 2019 Sep 10.
9
Deep neural network processing of DEER data.
Sci Adv. 2018 Aug 24;4(8):eaat5218. doi: 10.1126/sciadv.aat5218. eCollection 2018 Aug.
10
Improving yields of deuterated, methyl labeled protein by growing in HO.
J Biomol NMR. 2018 Aug;71(4):263-273. doi: 10.1007/s10858-018-0200-7. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验