Boubeche Mebrouka, Wang Ningning, Sun Jianping, Yang Pengtao, Zeng Lingyong, Luo Shaojuan, He Yiyi, Yu Jia, Wang Meng, Cheng Jinguang, Luo Huixia
School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite and Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, People's Republic of China.
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
J Phys Condens Matter. 2022 Mar 24;34(20). doi: 10.1088/1361-648X/ac594c.
We report the path from the charge density wave (CDW)-bearing superconductor CuIrTeto the metal insulator transition (MIT)-bearing compound CuIrSby chemical alloying with the gradual substitution of S for Te. The evolution of structural and physical properties of the CuIrTeS(0 ⩽⩽ 4) polycrystalline system is systemically examined. The x-ray diffraction (XRD) results imply CuIrTeS(0 ⩽⩽ 0.5) crystallizes in a NiAs defected trigonal structure, whereas it adapts to the cubic spinel structure for 3.6 ⩽⩽ 4 and it is a mixed phase in the doping range of 0.5 << 3.6. Unexpectedly, the resistivity and magnetization measurements reveal that small-concentration S substitution for Te can suppress the CDW transition, but it reappears around= 0.2, and the CDW transition temperature enhances clearly asaugments for 0.2 ⩽⩽ 0.5. Besides, the superconducting critical temperature () first increases with S doping content and then decreases after reaching a maximum= 2.82 K for CuIrTeS. MIT order has been observed in the spinel region (3.6 ⩽⩽ 4) associated withincreasing withincreasing. Finally, the rich electronic phase diagram of temperature versusfor this CuIrTeSsystem is assembled, where the superconducting dome is associated with the suppression and re-emergence of CDW as well as MIT states at the end upon sulfur substitution in the CuIrTeSchalcogenides.
我们报道了通过用S逐渐取代Te进行化学合金化,从具有电荷密度波(CDW)的超导体CuIrTe到具有金属绝缘体转变(MIT)的化合物CuIrS的路径。系统地研究了CuIrTeS(0⩽⩽4)多晶体系的结构和物理性质的演变。X射线衍射(XRD)结果表明,CuIrTeS(0⩽⩽0.5)以NiAs缺陷三角结构结晶,而在3.6⩽⩽4时它适应立方尖晶石结构,并且在0.5 << 3.6的掺杂范围内是混合相。出乎意料的是,电阻率和磁化强度测量表明,用小浓度的S取代Te可以抑制CDW转变,但在= 0.2左右它会再次出现,并且随着在0.2⩽⩽0.5范围内增加,CDW转变温度明显升高。此外,超导临界温度()首先随着S掺杂含量增加,然后在CuIrTeS达到最大值= 2.82 K后降低。在与随着增加而增加相关的尖晶石区域(3.6⩽⩽4)中观察到了MIT有序。最后,组装了该CuIrTeS体系的温度与的丰富电子相图,其中超导穹顶与CDW的抑制和重新出现以及在CuIrTe硫族化合物中进行硫取代时末端的MIT态相关。