Suppr超能文献

基于自动编码的低分辨率 MRI 实现各向异性 MRI 的语义平滑插值。

Autoencoding low-resolution MRI for semantically smooth interpolation of anisotropic MRI.

机构信息

Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers - location AMC, University of Amsterdam, the Netherlands; Informatics Institute, University of Amsterdam, the Netherlands.

Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers - location AMC, University of Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers - location AMC, University of Amsterdam, the Netherlands; Informatics Institute, University of Amsterdam, the Netherlands.

出版信息

Med Image Anal. 2022 May;78:102393. doi: 10.1016/j.media.2022.102393. Epub 2022 Feb 15.

Abstract

High-resolution medical images are beneficial for analysis but their acquisition may not always be feasible. Alternatively, high-resolution images can be created from low-resolution acquisitions using conventional upsampling methods, but such methods cannot exploit high-level contextual information contained in the images. Recently, better performing deep-learning based super-resolution methods have been introduced. However, these methods are limited by their supervised character, i.e. they require high-resolution examples for training. Instead, we propose an unsupervised deep learning semantic interpolation approach that synthesizes new intermediate slices from encoded low-resolution examples. To achieve semantically smooth interpolation in through-plane direction, the method exploits the latent space generated by autoencoders. To generate new intermediate slices, latent space encodings of two spatially adjacent slices are combined using their convex combination. Subsequently, the combined encoding is decoded to an intermediate slice. To constrain the model, a notion of semantic similarity is defined for a given dataset. For this, a new loss is introduced that exploits the spatial relationship between slices of the same volume. During training, an existing in-between slice is generated using a convex combination of its neighboring slice encodings. The method was trained and evaluated using publicly available cardiac cine, neonatal brain and adult brain MRI scans. In all evaluations, the new method produces significantly better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise Ratio (p<0.001 using one-sided Wilcoxon signed-rank test) than a cubic B-spline interpolation approach. Given the unsupervised nature of the method, high-resolution training data is not required and hence, the method can be readily applied in clinical settings.

摘要

高分辨率医学图像有益于分析,但采集它们并不总是可行的。或者,可以使用传统的上采样方法从低分辨率采集创建高分辨率图像,但此类方法无法利用图像中包含的高级上下文信息。最近,已经引入了性能更好的基于深度学习的超分辨率方法。然而,这些方法受到其监督性质的限制,即它们需要高分辨率的示例进行训练。相反,我们提出了一种无监督的深度学习语义插值方法,该方法可以从编码的低分辨率示例中合成新的中间切片。为了在平面内方向上实现语义平滑插值,该方法利用自动编码器生成的潜在空间。为了生成新的中间切片,使用两个空间相邻切片的潜在空间编码通过它们的凸组合进行组合。随后,将组合的编码解码为中间切片。为了约束模型,为给定的数据集定义了语义相似性的概念。为此,引入了一种新的损失函数,该损失函数利用了同一体积的切片之间的空间关系。在训练期间,使用其相邻切片编码的凸组合生成现有中间切片。该方法使用公开的心脏电影、新生儿脑和成人脑 MRI 扫描进行了训练和评估。在所有评估中,新方法在结构相似性指数度量和峰值信噪比(使用单边 Wilcoxon 符号秩检验,p<0.001)方面的结果明显优于三次 B 样条插值方法。鉴于该方法的无监督性质,不需要高分辨率的训练数据,因此该方法可以在临床环境中轻松应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验