Stegmann Gabriela, Hahn Shira, Bhandari Samarth, Kawabata Kan, Shefner Jeremy, Duncan Cayla Jessica, Liss Julie, Berisha Visar, Mueller Kimberly
Arizona State University Phoenix Arizona USA.
Aural Analytics Scottsdale Arizona USA.
Alzheimers Dement (Amst). 2022 Feb 23;14(1):e12294. doi: 10.1002/dad2.12294. eCollection 2022.
We developed and evaluated an automatically extracted measure of cognition (semantic relevance) using automated and manual transcripts of audio recordings from healthy and cognitively impaired participants describing the Cookie Theft picture from the Boston Diagnostic Aphasia Examination. We describe the rationale and metric validation. We developed the measure on one dataset and evaluated it on a large database (>2000 samples) by comparing accuracy against a manually calculated metric and evaluating its clinical relevance. The fully automated measure was accurate (r = .84), had moderate to good reliability (intra-class correlation = .73), correlated with Mini-Mental State Examination and improved the fit in the context of other automatic language features (r = .65), and longitudinally declined with age and level of cognitive impairment. This study demonstrates the use of a rigorous analytical and clinical framework for validating automatic measures of speech, and applied it to a measure that is accurate and clinically relevant.
我们使用来自健康和认知障碍参与者描述波士顿诊断性失语症检查中的“饼干失窃图”的音频记录的自动和手动转录本,开发并评估了一种自动提取的认知测量方法(语义相关性)。我们描述了其基本原理和指标验证。我们在一个数据集上开发了该测量方法,并通过将准确性与手动计算的指标进行比较并评估其临床相关性,在一个大型数据库(>2000个样本)上对其进行了评估。这种全自动测量方法准确(r = 0.84),具有中等至良好的可靠性(组内相关性 = 0.73),与简易精神状态检查表相关,并且在其他自动语言特征的背景下改善了拟合度(r = 0.65),并且随着年龄和认知障碍程度的增加而纵向下降。本研究展示了使用严格的分析和临床框架来验证语音自动测量方法,并将其应用于一种准确且具有临床相关性的测量方法。