Suppr超能文献

一种可穿戴的多模态声学系统,用于呼吸分析。

A wearable multi-modal acoustic system for breathing analysis.

机构信息

LASARRUS Clinic and Research Center, Baltimore, Maryland 21220, USA.

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.

出版信息

J Acoust Soc Am. 2022 Feb;151(2):1033. doi: 10.1121/10.0009487.

Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide with over 3 × 10 deaths in 2019. Such an alarming figure becomes frightening when combined with the number of lost lives resulting from COVID-caused respiratory failure. Because COPD exacerbations identified early can commonly be treated at home, early symptom detections may enable a major reduction of COPD patient readmission and associated healthcare costs; this is particularly important during pandemics such as COVID-19 in which healthcare facilities are overwhelmed. The standard adjuncts used to assess lung function (e.g., spirometry, plethysmography, and CT scan) are expensive, time consuming, and cannot be used in remote patient monitoring of an acute exacerbation. In this paper, a wearable multi-modal system for breathing analysis is presented, which can be used in quantifying various airflow obstructions. The wearable multi-modal electroacoustic system employs a body area sensor network with each sensor-node having a multi-modal sensing capability, such as a digital stethoscope, electrocardiogram monitor, thermometer, and goniometer. The signal-to-noise ratio (SNR) of the resulting acoustic spectrum is used as a measure of breathing intensity. The results are shown from data collected from over 35 healthy subjects and 3 COPD subjects, demonstrating a positive correlation of SNR values to the health-scale score.

摘要

慢性阻塞性肺疾病(COPD)是全球第三大致死原因,2019 年有超过 300 万人死亡。当与 COVID 引起的呼吸衰竭导致的生命损失数量相结合时,这种令人震惊的数字变得更加可怕。因为 COPD 加重通常可以在家中治疗,如果能够早期发现症状,可能会大大减少 COPD 患者的再入院率和相关医疗费用;这在 COVID-19 等大流行期间尤为重要,因为医疗设施不堪重负。用于评估肺功能的标准辅助手段(例如肺活量计、体积描记法和 CT 扫描)既昂贵又耗时,并且不能用于急性加重期的远程患者监测。在本文中,提出了一种用于呼吸分析的可穿戴多模态系统,可用于量化各种气流阻塞。可穿戴多模态电声系统采用具有多模态传感能力的体域网,每个传感器节点都具有多模态传感能力,例如数字听诊器、心电图监测器、温度计和测角器。所得到的声谱的信噪比(SNR)用作呼吸强度的度量。结果来自 35 名健康受试者和 3 名 COPD 受试者的数据收集,显示 SNR 值与健康评分呈正相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f94/8942111/8435d1f4731a/JASMAN-000151-001033_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验