Suppr超能文献

用于光声痕量气体检测的新型硅基微机电系统。

New silicon-based micro-electro-mechanical systems for photo-acoustic trace-gas detection.

作者信息

Pelini Jacopo, Dello Russo Stefano, Lopez Garcia Inaki, Concetta Canino Maria, Roncaglia Alberto, Cancio Pastor Pablo, Galli Iacopo, Ren Wei, De Natale Paolo, Wang Zhen, Borri Simone, Siciliani de Cumis Mario

机构信息

University "Federico II", Corso Umberto I 40, Naples, 80138, Italy.

CNR-INO - Istituto Nazionale di Ottica, and LENS, via N. Carrara 1, Sesto Fiorentino, 50019, Italy.

出版信息

Photoacoustics. 2024 May 21;38:100619. doi: 10.1016/j.pacs.2024.100619. eCollection 2024 Aug.

Abstract

The achievable sensitivity level of photo-acoustic trace-gas sensors essentially depends on the performances of the acoustic transducer. In this work, the mechanical response of different silicon-based micro-electro-mechanical systems (MEMS) is characterized, aiming at investigating both their mechanical properties, namely the resonance frequency and the quality factor, and the minimum detection limit (MDL) achievable when they are exploited as an acoustic-to-voltage transducer in a trace-gas photoacoustic setup. For this purpose, a 4.56 µm Continuous-Wave (CW) quantum cascade laser (QCL) is used to excite a strong NO roto-vibrational transition with a line strength of 2.14 × 10 cm/molecule, and the detection of MEMS oscillations is performed via an interferometric readout. As a general trend, the minimum detection limit decreases when the resonance frequency investigated increases, achieving a value of 15 parts per billion with a 3 dB cut-off lock-in bandwidth equal to 100 mHz, around 10 kHz.

摘要

光声痕量气体传感器可实现的灵敏度水平主要取决于声学换能器的性能。在这项工作中,对不同的硅基微机电系统(MEMS)的机械响应进行了表征,旨在研究其机械性能,即共振频率和品质因数,以及当它们在痕量气体光声装置中用作声-电压换能器时可实现的最低检测限(MDL)。为此,使用一台4.56 µm连续波(CW)量子级联激光器(QCL)来激发具有2.14×10 cm/分子线强的强烈NO转动-振动跃迁,并通过干涉读出法来检测MEMS振荡。一般来说,随着所研究的共振频率增加,最低检测限会降低,在约10 kHz处,当3 dB截止锁定带宽等于100 mHz时,可达到十亿分之十五的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e31/11637086/3e4924643c75/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验