Suppr超能文献

一种在多个生物和工程系统中通用的反馈控制原理。

A feedback control principle common to several biological and engineered systems.

机构信息

Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA.

出版信息

J R Soc Interface. 2022 Mar;19(188):20210711. doi: 10.1098/rsif.2021.0711. Epub 2022 Mar 2.

Abstract

Feedback control is used by many distributed systems to optimize behaviour. Traditional feedback control algorithms spend significant resources to constantly sense and stabilize a continuous control variable of interest, such as vehicle speed for implementing cruise control, or body temperature for maintaining homeostasis. By contrast, discrete-event feedback (e.g. a server acknowledging when data are successfully transmitted, or a brief antennal interaction when an ant returns to the nest after successful foraging) can reduce costs associated with monitoring a continuous variable; however, optimizing behaviour in this setting requires alternative strategies. Here, we studied parallels between discrete-event feedback control strategies in biological and engineered systems. We found that two common engineering rules-additive-increase, upon positive feedback, and multiplicative-decrease, upon negative feedback, and multiplicative-increase multiplicative-decrease-are used by diverse biological systems, including for regulating foraging by harvester ant colonies, for maintaining cell-size homeostasis, and for synaptic learning and adaptation in neural circuits. These rules support several goals of these systems, including optimizing efficiency (i.e. using all available resources); splitting resources fairly among cooperating agents, or conversely, acquiring resources quickly among competing agents; and minimizing the latency of responses, especially when conditions change. We hypothesize that theoretical frameworks from distributed computing may offer new ways to analyse adaptation behaviour of biology systems, and in return, biological strategies may inspire new algorithms for discrete-event feedback control in engineering.

摘要

反馈控制被许多分布式系统用于优化行为。传统的反馈控制算法花费大量资源来不断感知和稳定感兴趣的连续控制变量,例如用于实现巡航控制的车辆速度,或用于维持内稳态的体温。相比之下,离散事件反馈(例如,服务器在成功传输数据时进行确认,或者蚂蚁在成功觅食后返回巢穴时进行短暂的触角交互)可以降低与监测连续变量相关的成本;然而,在这种情况下优化行为需要替代策略。在这里,我们研究了生物和工程系统中离散事件反馈控制策略之间的相似之处。我们发现,两种常见的工程规则——正反馈时的加法增加和负反馈时的乘法减少,以及乘法增加和乘法减少——被包括收获蚁群觅食调节、细胞大小内稳态维持以及神经回路中的突触学习和适应在内的多种生物系统所采用。这些规则支持这些系统的几个目标,包括优化效率(即利用所有可用资源);在合作代理之间公平分配资源,或者相反,在竞争代理之间快速获取资源;以及最小化响应的延迟,特别是当条件发生变化时。我们假设分布式计算的理论框架可能为分析生物系统的适应行为提供新的方法,而反过来,生物策略也可能为工程中的离散事件反馈控制提供新的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc0/8889180/40cbc5b388ab/rsif20210711f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验