Department of Neuroscience, University of Minnesota, Minneapolis, United States.
Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States.
Elife. 2022 Mar 2;11:e75540. doi: 10.7554/eLife.75540.
Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field functional magnetic resonance imaging (fMRI) performed at 10.5 T to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole-brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Further, with these results in hand, we were able to show that one facet of the high-dimensional functional connectivity (FC) topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match FC gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying organizational principle of neural processing across the whole brain.
层次时间动态是大脑的基本计算特性;然而,在动物模型中,还没有针对神经处理时间尺度的全脑、非侵入性研究。为此,我们使用超高场功能磁共振成像(fMRI)的空间分辨率和灵敏度,在 10.5T 下探测整个猕猴大脑的时间尺度。我们发现从 fMRI 和电生理学估计的时间尺度在种内具有一致性。至关重要的是,我们将现有的电生理层次结构扩展到整个大脑的拓扑结构。我们的结果验证了血流动力学和电生理固有时间尺度的互补使用,为未来的转化研究奠定了基础。此外,有了这些结果,我们能够表明大脑中任何区域的高维功能连接(FC)拓扑的一个方面与时间动态密切相关。我们表明,固有时间尺度是沿着与整个大脑的 FC 梯度拓扑密切匹配的空间梯度组织的。我们的结论是,固有时间尺度是整个大脑神经处理的统一组织原则。