Adler Daniel A, Wang Fei, Mohr David C, Estrin Deborah, Livesey Cecilia, Choudhury Tanzeem
Cornell Tech, USA.
Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA.
BJPsych Open. 2022 Mar 3;8(2):e58. doi: 10.1192/bjo.2022.28.
Digital biomarkers of mental health, created using data extracted from everyday technologies including smartphones, wearable devices, social media and computer interactions, have the opportunity to revolutionise mental health diagnosis and treatment by providing near-continuous unobtrusive and remote measures of behaviours associated with mental health symptoms. Machine learning models process data traces from these technologies to identify digital biomarkers. In this editorial, we caution clinicians against using digital biomarkers in practice until models are assessed for equitable predictions ('model equity') across demographically diverse patients at scale, behaviours over time, and data types extracted from different devices and platforms. We posit that it will be difficult for any individual clinic or large-scale study to assess and ensure model equity and alternatively call for the creation of a repository of open de-identified data for digital biomarker development.
利用从包括智能手机、可穿戴设备、社交媒体和计算机交互在内的日常技术中提取的数据创建的心理健康数字生物标志物,有机会通过提供与心理健康症状相关行为的近乎连续、不显眼且远程的测量,彻底改变心理健康的诊断和治疗。机器学习模型处理来自这些技术的数据痕迹以识别数字生物标志物。在这篇社论中,我们告诫临床医生,在对模型在大规模不同人口统计学患者、随时间变化的行为以及从不同设备和平台提取的数据类型方面进行公平预测(“模型公平性”)评估之前,不要在实践中使用数字生物标志物。我们认为,任何单个诊所或大规模研究都很难评估并确保模型公平性,因此呼吁创建一个用于数字生物标志物开发的开放匿名数据存储库。