Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, 210023, China.
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing, 210023, China.
Sci Data. 2022 Mar 2;9(1):66. doi: 10.1038/s41597-022-01168-x.
Reliable information on building rooftops is crucial for utilizing limited urban space effectively. In recent decades, the demand for accurate and up-to-date data on the areas of rooftops on a large-scale is increasing. However, obtaining these data is challenging due to the limited capability of conventional computer vision methods and the high cost of 3D modeling involving aerial photogrammetry. In this study, a geospatial artificial intelligence framework is presented to obtain data for rooftops using high-resolution open-access remote sensing imagery. This framework is used to generate vectorized data for rooftops in 90 cities in China. The data was validated on test samples of 180 km across different regions with spatial resolution, overall accuracy, and F1 score of 1 m, 97.95%, and 83.11%, respectively. In addition, the generated rooftop area conforms to the urban morphological characteristics and reflects urbanization level. These results demonstrate that the generated dataset can be used for data support and decision-making that can facilitate sustainable urban development effectively.
可靠的建筑物屋顶信息对于有效利用有限的城市空间至关重要。近几十年来,人们对大规模屋顶区域的准确、最新数据的需求不断增加。然而,由于传统计算机视觉方法的能力有限,以及涉及航空摄影测量的 3D 建模成本高昂,获取这些数据具有挑战性。在这项研究中,提出了一个地理空间人工智能框架,使用高分辨率开放获取遥感图像来获取屋顶数据。该框架用于生成中国 90 个城市的屋顶矢量化数据。该数据在跨越不同地区、具有空间分辨率、整体准确性和 F1 分数为 1m、97.95%和 83.11%的 180km 测试样本上进行了验证。此外,生成的屋顶面积符合城市形态特征,并反映了城市化水平。这些结果表明,生成的数据集可用于数据支持和决策,从而有效地促进可持续城市发展。