Suppr超能文献

一种基于使用强化学习的递归神经网络的工作记忆模型。

A working memory model based on recurrent neural networks using reinforcement learning.

作者信息

Wang Mengyuan, Wang Yihong, Xu Xuying, Pan Xiaochuan

机构信息

Institute for Cognitive Neurodynamics, Center for Intelligent Computing, School of Mathematics, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):3031-3058. doi: 10.1007/s11571-024-10137-6. Epub 2024 Jun 13.

Abstract

Numerous electrophysiological experiments have reported that the prefrontal cortex (PFC) is involved in the process of working memory. PFC neurons continue firing to maintain stimulus information in the delay period without external stimuli in working memory tasks. Further findings indicate that while the activity of single neurons exhibits strong temporal and spatial dynamics (heterogeneity), the activity of population neurons can encode spatiotemporal information of stimuli stably and reliably. From the perspective of neural networks, the computational mechanism underlying this phenomenon is not well demonstrated. The main purpose of this paper is to adopt a new strategy to explore the neural computation mechanism of working memory. We used reinforcement learning to train a recurrent neural network model to learn a spatial working memory task. The model is composed of a decision network and a baseline network. The decision network is responsible for updating strategies to make action choices, while the baseline network evaluates action choices to predict rewards. Simulated results demonstrate that the model can perform the spatial working memory task. The activity of the recurrent units has characteristics such as temporal dynamics and preferred direction selectivity, but their population activity encodes the stimulus information stably during the delay period in a low-dimensional subspace. These activity characteristics displayed by the model units are similar to those of PFC neurons observed in the same experiments. Meanwhile, as the network model continued learning the task, the temporal stability and spatial separability of the stimulus information encoded by the activity of model units in the low-dimensional subspace gradually strengthened, and the accuracy of the network's action choices also increased. In summary, this network model provides a new simulation method for spatial working memory tasks and a new perspective for understanding the characteristics of neuron activity in the PFC.

摘要

大量电生理实验报告称,前额叶皮层(PFC)参与工作记忆过程。在工作记忆任务中,PFC神经元在延迟期持续放电,以在无外部刺激的情况下维持刺激信息。进一步的研究结果表明,虽然单个神经元的活动表现出强烈的时间和空间动态(异质性),但群体神经元的活动能够稳定且可靠地编码刺激的时空信息。从神经网络的角度来看,这一现象背后的计算机制尚未得到充分证明。本文的主要目的是采用一种新策略来探索工作记忆的神经计算机制。我们使用强化学习来训练一个循环神经网络模型,以学习空间工作记忆任务。该模型由一个决策网络和一个基线网络组成。决策网络负责更新策略以做出动作选择,而基线网络评估动作选择以预测奖励。模拟结果表明,该模型能够执行空间工作记忆任务。循环单元的活动具有时间动态和偏好方向选择性等特征,但其群体活动在延迟期内在低维子空间中稳定地编码刺激信息。模型单元显示的这些活动特征与在相同实验中观察到的PFC神经元的特征相似。同时,随着网络模型持续学习该任务,模型单元活动在低维子空间中编码的刺激信息的时间稳定性和空间可分性逐渐增强,并且网络动作选择的准确性也有所提高。总之,这个网络模型为空间工作记忆任务提供了一种新的模拟方法,并为理解PFC中神经元活动的特征提供了一个新的视角。

相似文献

本文引用的文献

3
Category learning in a recurrent neural network with reinforcement learning.基于强化学习的循环神经网络中的类别学习。
Front Psychiatry. 2022 Oct 25;13:1008011. doi: 10.3389/fpsyt.2022.1008011. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验