Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia.
Department of Medical Laboratory Science, University of Cape Coast, Ghana.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3):e1785. doi: 10.1002/wnan.1785. Epub 2022 Mar 3.
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
SARS-COV-2 的出现是导致新型冠状病毒病(COVID-19)的病原体,已成为一种大流行威胁。早期、准确地检测病毒对于有效诊断和治疗至关重要。各种检测试剂盒和检测方法,包括核酸检测方法、抗原检测、血清学检测和酶联免疫吸附试验(ELISA),已被实施或正在探索中,以检测病毒和/或表征细胞和针对感染的抗体反应。然而,这些方法具有内在的缺点,如非特异性、高成本、检测结果的周转时间长,并且可能劳动强度大。此外,循环的 SARS-COV-2 变体引起关注、降低了抗体敏感性和/或中和作用,以及可能的抗体依赖性增强(ADE),这就需要寻找替代的有效治疗方法。适体是通过 SELEX(指数富集的配体进化)人工产生的单链寡核苷酸,可能具有生成高亲和力中和剂和/或生物探针的能力,用于监测相关的 SARS-COV-2 和 COVID-19 生物标志物。本文综述并讨论了适体在 SARS-COV-2 的快速即时检测和治疗中的应用前景。我们强调了其他 SARS-COV-2 靶标(N 蛋白、刺突蛋白茎-螺旋)、通过竞争测定和计算技术增强的 SELEX,用于快速发现和分离针对 COVID-19 和未来大流行的治疗性适体。本文进一步概述了用于工程化这些适体为超高效阻断剂、多价治疗剂和疫苗的定点生物缀合方法、可定制的分子支架策略和纳米技术平台,以增强针对病毒的体液和细胞免疫。本文属于以下类别:治疗方法和药物发现 > 新兴技术 诊断工具 > 生物传感 治疗方法和药物发现 > 纳米医学治疗传染病 治疗方法和药物发现 > 纳米医学治疗呼吸道疾病。