Mplus.
Psychol Methods. 2022 Feb;27(1):1-16. doi: 10.1037/met0000370. Epub 2020 Nov 23.
This article demonstrates that the regular LTA model is unnecessarily restrictive and that an alternative model is readily available that typically fits the data much better, leads to better estimates of the transition probabilities, and extracts new information from the data. By allowing random intercept variation in the model, between-subject variation is separated from the within-subject latent class transitions over time allowing a clearer interpretation of the data. Analysis of two examples from the literature demonstrates the advantages of random intercept LTA. Model variations include Mover-Stayer analysis, measurement invariance analysis, and analysis with covariates. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
本文证明,常规的 LTA 模型过于严格,并且有一种替代模型随时可用,这种替代模型通常更能很好地拟合数据,导致对转移概率的更好估计,并从数据中提取新信息。通过允许模型中的随机截距变化,将个体间的变化与随时间的个体潜在类别转移分开,从而可以更清楚地解释数据。对文献中的两个示例的分析展示了随机截距 LTA 的优势。模型变化包括移动-停留者分析、测量不变性分析和带有协变量的分析。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。