Hou Ping, Liu Nana, Feng Xiangnan, Chen Yan, Wang Huixia, Wang Xiaopeng, Liu Jie, Zhan Pengchao, Liu Xing, Shang Bo, Shen Zhimeng, Wang Luotong, Gao Jianbo, Lyu Peijie
Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Department of Statistics and Data Science, School of Management, Fudan University, Shanghai, China.
Quant Imaging Med Surg. 2024 Sep 1;14(9):6449-6465. doi: 10.21037/qims-24-197. Epub 2024 Aug 12.
Low-kiloelectron volt (keV) virtual monochromatic images (VMIs) from low-dose (LD) dual-energy computed tomography (DECT) can enhance lesion contrast but suffer from high image noise. Recently, a deep learning image reconstruction (DLIR) algorithm has been developed and shown significant potential in suppressing image noise and improving image quality. To date, the capacity of LD low-keV thoracic-abdominal-pelvic DECT with DLIR to detect various types of tumor lesions have not been assessed. Hence, this study aimed to evaluate the image quality and lesion detection capabilities of LD VMIs using DLIR with thoracic-abdominal-pelvic DECT versus standard-dose (SD) iterative reconstruction (IR) in oncology patients.
This prospective intraindividual study included 56 oncology patients who received a SD (13.86 mGy) and a consecutive LD (7.15 mGy) thoracic-abdominal-pelvic DECT from April 2022 to July 2023 at The First Affiliated hospital of Zhengzhou University. SD VMIs were reconstructed using IR at 50 keV (SD-IR), while LD VMIs were processed using DLIR at 50 keV (LD-DL) and 40 keV (LD-DL), respectively. Quantitative image parameters [computed tomography (CT) values, image noise, and contrast-to-noise ratios (CNRs)], qualitative metrics (image noise, vessel conspicuity, image contrast, artificial sensation, and overall image quality), and lesion CNRs and conspicuity were compared. The lesion detection rates in the SD-IR, LD-DL, and LD-DL VMIs were assessed according to lesion location (lung, liver, and lymph), type, and size. Repeated measures analysis of variance and the Friedman test were applied for comparing quantitative and qualitative measures, respectively. The Cochran Q test was used for comparing lesion detection rates.
Compared to SD-IR VMIs, LD-DL VMIs showed similar CT values and image noise (P>0.05), similar (P>0.05) or higher(P<0.05) CNRs, similar (P>0.05) or superior (P<0.05) perceptual image quality, and similar (P>0.05) or higher (P<0.001) lesion CNR and conspicuity. LD-DL VMIs exhibited higher CT values (by 40.4-47.1%) and CNRs (by 21.8-39.8%) (P<0.001), equivalent image noise, similar (P>0.05) or superior (P<0.05) perceptual image quality except for artificial sensation, and similar (P>0.05) or higher (P<0.001) lesion CNRs (by 16.5-46.3%) and conspicuity. The VMIs of LD-DL and LD-DL were consistent with those of SD-IR in terms of lesion detection capability in pulmonary nodules [SD-IR LD-DL LD-DL: 88/88 (100.0%) 88/88 (100.0%) 88/88 (100.0%); P>0.99], for lymph nodes [125/126 (99.2%) 123/126 (97.6%) 124/126 (98.4%); P>0.05], and high-contrast liver lesions [12/12 (100.0%) 12/12 (100.0%) 12/12 (100.0%); P>0.05], but not for small liver lesions (≤0.5 cm) [63/65 (96.9%) 43/65 (66.2%) 51/65 (78.5%); P<0.05] or low-contrast liver lesions [198/200 (99.0%) 174/200 (87.0%) 183/200 (91.5%); P<0.05].
VMIs at 40 keV with DLIR enables a 50% decrease in the radiation dose while largely maintaining diagnostic capabilities for multidetection of pulmonary nodules, lymph nodes, and liver lesions in oncology patients.
低剂量(LD)双能计算机断层扫描(DECT)的低千伏电子伏特(keV)虚拟单色图像(VMI)可增强病变对比度,但图像噪声较高。最近,一种深度学习图像重建(DLIR)算法已被开发出来,并在抑制图像噪声和提高图像质量方面显示出巨大潜力。迄今为止,LD低keV胸腹盆腔DECT联合DLIR检测各种类型肿瘤病变的能力尚未得到评估。因此,本研究旨在评估在肿瘤患者中,使用DLIR的LD VMI与标准剂量(SD)迭代重建(IR)的胸腹盆腔DECT的图像质量和病变检测能力。
这项前瞻性个体内研究纳入了56例肿瘤患者,他们于2022年4月至2023年7月在郑州大学第一附属医院接受了一次SD(13.86 mGy)和一次连续的LD(7.15 mGy)胸腹盆腔DECT检查。SD VMI使用IR在50 keV重建(SD-IR),而LD VMI分别使用DLIR在50 keV(LD-DL)和40 keV(LD-DL)进行处理。比较了定量图像参数[计算机断层扫描(CT)值、图像噪声和对比噪声比(CNR)]、定性指标(图像噪声、血管清晰度、图像对比度、人工感觉和整体图像质量)以及病变CNR和清晰度。根据病变位置(肺、肝和淋巴结)、类型和大小评估SD-IR、LD-DL和LD-DL VMI中的病变检测率。分别应用重复测量方差分析和Friedman检验来比较定量和定性测量结果。使用Cochran Q检验来比较病变检测率。
与SD-IR VMI相比,LD-DL VMI显示出相似的CT值和图像噪声(P>0.05)、相似(P>0.05)或更高(P<0.05)的CNR、相似(P>0.05)或更好(P<0.05)的感知图像质量,以及相似(P>0.05)或更高(P<0.001)的病变CNR和清晰度。LD-DL VMI表现出更高的CT值(高40.4-47.1%)和CNR(高21.8-39.8%)(P<0.001)、相当的图像噪声、除人工感觉外相似(P>0.05)或更好(P<0.05)的感知图像质量,以及相似(P>0.05)或更高(P<0.001)的病变CNR(高16.5-46.3%)和清晰度。在肺结节的病变检测能力方面,LD-DL和LD-DL的VMI与SD-IR的VMI一致[SD-IR LD-DL LD-DL:88/88(100.0%) 88/88(100.0%) 88/88(100.0%);P>0.99],在淋巴结方面[125/126(99.2%) 123/126(97.6%) 124/126(98.4%);P>0.05],以及高对比度肝病变方面[12/12(100.0%) 12/12(100.0%) 12/12(100.0%);P>0.05],但在小肝病变(≤0.5 cm)方面不一致[63/65(96.9%) 43/65(66.2%) 51/65(78.5%);P<0.05]或低对比度肝病变方面[198/200(99.0%) 174/200(87.0%) 183/200(91.5%);P<0.05]。
40 keV的DLIR-VMI可使辐射剂量降低50%,同时在很大程度上保持对肿瘤患者肺部结节、淋巴结和肝脏病变多检测的诊断能力。