Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
Department of Biology, Molecular Biotechnology & Systems Biology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
PLoS Pathog. 2022 Mar 3;18(3):e1010367. doi: 10.1371/journal.ppat.1010367. eCollection 2022 Mar.
Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.
灰葡萄孢是一种主要的植物病原体,感染了超过 1400 种植物。在入侵过程中,真菌会迅速杀死宿主细胞,据信这是由程序性植物细胞死亡的诱导所支持的。为了全面评估目前已知的大多数植物细胞死亡诱导蛋白(CDIPs)和代谢物对坏死性感染的贡献,建立了一种优化的 CRISPR/Cas9 方案,该方案允许进行连续的无标记诱变,以产生多达 12 个 CDIP 缺失的多个缺失突变体。6x 和 12x 缺失突变体的全基因组测序显示,脱靶突变的数量很少,且与 Cas9 介导的切割无关。分泌组分析证实了缺失基因编码的分泌蛋白的丢失。对突变体的感染测试表明,随着突变基因数量的增加,毒力逐渐降低,并且敲除对不同宿主植物的影响也不同。突变体的比较分析证实了两种聚半乳糖醛酸酶(PG1、PG2)和植物毒性代谢物 botrydial 和 botcinins 对感染的重要作用,但删除其他 CDIPs 则没有或只有微弱的作用。与野生型灰葡萄孢和 12x 缺失突变体相比,模式识别受体 SOBIR1 和 BAK1 的核心受体发生突变或沉默的拟南芥植物表现出相似的易感性。这些结果使人对这些植物防御调节剂在灰葡萄孢感染中的主要作用产生怀疑。尽管丧失了大多数已知的植物毒性化合物,但多个突变体的植物体内分泌组仍然具有相当大的植物毒性活性,证明还有其他未知的 CDIPs 有助于坏死和毒力。我们的研究首次系统地研究了真菌毒力因子的功能冗余性,并证明灰葡萄孢释放了一种高度冗余的蛋白质混合物,以实现对各种宿主植物的坏死性感染。