Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India.
Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
Environ Pollut. 2022 Jun 1;302:119068. doi: 10.1016/j.envpol.2022.119068. Epub 2022 Feb 28.
Uranium, a radionuclide, is a predominant element utilized for speciality requirements in industrial applications, as fuels and catalyst. The radioactive properties and chemical toxicity of uranium causes a major threat to the ecosystem. The hazards associated with Uranium pollution includes the cancer in bones, liver, and lungs. The toxicological properties of Uranium are discussed in detail. Although there are many methods to eliminate those hazards, this research work is aimed to describe the application of bioremediation methods. Bioremediation methods involve elimination of the hazards of uranium, by transforming into low oxidation form using natural microbes and plants. This study deeply elucidates the methods as bioleaching, biosorption, bioreduction and phytoremediation. Bioleaching process involves bio-oxidation of tetravalent uranium when it gets in contact with acidophilic metal bacterial complex to obtain leach liquor. In biosorption, chitin/chitosan derived sorbents act as chelators and binds with uranium by electrostatic attraction. Bio reduction employs a bacterial transformation into enzymes which immobilize and reduce uranium. Phytoremediation includes phytoextraction and phytotranslocation of uranium through xylems from soil to roots and shoots of plants. The highest uranium removal and uptake reported using the different methods are listed as follows: bioleaching (100% uranium recovery), biosorption (167 g kg uranium uptake), bioreduction (98.9% uranium recovery), and phytoremediation (49,639 mg kg uranium uptake). Among all the techniques mentioned above, bioleaching has been proved to be the most efficient for uranium remediation.
铀是一种放射性核素,是工业应用中特殊要求的主要元素,可用作燃料和催化剂。铀的放射性和化学毒性对生态系统构成了重大威胁。与铀污染相关的危害包括骨骼、肝脏和肺部的癌症。本文详细讨论了铀的毒理学特性。虽然有许多方法可以消除这些危害,但这项研究工作旨在描述生物修复方法的应用。生物修复方法包括利用天然微生物和植物将铀的危害转化为低氧化形式来消除危害。本文深入阐述了生物沥滤、生物吸附、生物还原和植物修复等方法。生物沥滤过程涉及四价铀与嗜酸金属细菌复合物接触时的生物氧化,以获得浸出液。在生物吸附中,壳聚糖衍生的吸附剂作为螯合剂,通过静电吸引与铀结合。生物还原利用细菌转化为酶,将铀固定并还原。植物修复包括通过木质部将铀从土壤中转移到植物的根和茎中的植物提取和植物迁移。报告的不同方法中铀去除和吸收的最高值如下:生物沥滤(100%铀回收)、生物吸附(167 g kg 铀吸收)、生物还原(98.9%铀回收)和植物修复(49639 mg kg 铀吸收)。在上述所有技术中,生物沥滤已被证明是最有效的铀修复方法。