Suppr超能文献

使用混合统计机器学习模型预测印度第三波 COVID-19 的影响:时间序列预测和情感分析方法。

Predicting the impact of the third wave of COVID-19 in India using hybrid statistical machine learning models: A time series forecasting and sentiment analysis approach.

机构信息

Department of Computer Science and Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi, AKTU, Lucknow, India.

Department of Computer Science and Engineering, Noida International University, Noida, India.

出版信息

Comput Biol Med. 2022 May;144:105354. doi: 10.1016/j.compbiomed.2022.105354. Epub 2022 Feb 26.

Abstract

BACKGROUND

Since January 2020, India has faced two waves of COVID-19; preparation for the upcoming waves is the primary challenge for public health sectors and governments. Therefore, it is important to forecast future cumulative confirmed cases to plan and implement control measures effectively.

METHODS

This study proposed a hybrid autoregressive integrated moving average (ARIMA) and Prophet model to predict daily confirmed and cumulative confirmed cases. The built-in auto.arima function was first used to select the optimal hyperparameter values of the ARIMA model. Then, the modified ARIMA model was used to find the best fit between the test and forecast data to find the best model parameter combinations. Articles, blog posts, and news stories from virologists, scientists, and health experts related to the third wave of COVID-19 were gathered using the Python web scraping package Beautiful Soup. Their opinions (sentiments) toward the potential third wave were analyzed using natural language processing (NLP) libraries.

RESULTS

A spike in daily confirmed and cumulative confirmed cases was predicted in India in the next 180 days based on past time series data. The results were validated using various analytical tools and evaluation metrics, producing a root mean square error (RMSE) of 0.14 and a mean absolute percentage error (MAPE) of 0.06. The NLP processing results revealed negative sentiments in most articles and blogs, with few exceptions.

CONCLUSION

The findings of this study suggest that there will be more active cases in the upcoming days. The proposed models can forecast future daily confirmed and cumulative confirmed cases. This study will help the country and states plan appropriate public health measures for the upcoming waves of COVID-19.

摘要

背景

自 2020 年 1 月以来,印度已面临两波 COVID-19 疫情;为即将到来的疫情做准备是公共卫生部门和政府面临的主要挑战。因此,预测未来的累计确诊病例对于有效规划和实施控制措施非常重要。

方法

本研究提出了一种混合自回归综合移动平均(ARIMA)和 Prophet 模型来预测每日确诊和累计确诊病例。首先使用内置的 auto.arima 函数选择 ARIMA 模型的最佳超参数值。然后,使用修正的 ARIMA 模型来寻找测试和预测数据之间的最佳拟合,以找到最佳模型参数组合。使用 Python 网络爬虫包 Beautiful Soup 收集与 COVID-19 第三波相关的病毒学家、科学家和卫生专家的文章、博客文章和新闻报道。使用自然语言处理(NLP)库分析他们对潜在第三波的看法(情绪)。

结果

根据过去的时间序列数据,预测印度在未来 180 天内的每日确诊和累计确诊病例将出现高峰。使用各种分析工具和评估指标对结果进行验证,得到的均方根误差(RMSE)为 0.14,平均绝对百分比误差(MAPE)为 0.06。NLP 处理结果显示,大多数文章和博客都存在负面情绪,但也有少数例外。

结论

本研究结果表明,未来几天将有更多的活跃病例。所提出的模型可以预测未来的每日确诊和累计确诊病例。本研究将有助于国家和各州为即将到来的 COVID-19 浪潮制定适当的公共卫生措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9833/8881817/cd224e0ebe56/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验