PAMI Research Group, Department of Computer and Information Science, University of Macau , Taipa, Macau, China.
School of Computer Science, Chongqing University , Shapingba, Chongqing, China.
mSystems. 2023 Aug 31;8(4):e0034523. doi: 10.1128/msystems.00345-23. Epub 2023 Jul 11.
Antimicrobial peptides (AMPs) are a promising alternative to antibiotics to combat drug resistance in pathogenic bacteria. However, the development of AMPs with high potency and specificity remains a challenge, and new tools to evaluate antimicrobial activity are needed to accelerate the discovery process. Therefore, we proposed MBC-Attention, a combination of a multi-branch convolution neural network architecture and attention mechanisms to predict the experimental minimum inhibitory concentration of peptides against . The optimal MBC-Attention model achieved an average Pearson correlation coefficient (PCC) of 0.775 and a root mean squared error (RMSE) of 0.533 (log μM) in three independent tests of randomly drawn sequences from the data set. This results in a 5-12% improvement in PCC and a 6-13% improvement in RMSE compared to 17 traditional machine learning models and 2 optimally tuned models using random forest and support vector machine. Ablation studies confirmed that the two proposed attention mechanisms, global attention and local attention, contributed largely to performance improvement. IMPORTANCE Antimicrobial peptides (AMPs) are potential candidates for replacing conventional antibiotics to combat drug resistance in pathogenic bacteria. Therefore, it is necessary to evaluate the antimicrobial activity of AMPs quantitatively. However, wet-lab experiments are labor-intensive and time-consuming. To accelerate the evaluation process, we develop a deep learning method called MBC-Attention to regress the experimental minimum inhibitory concentration of AMPs against . The proposed model outperforms traditional machine learning methods. Data, scripts to reproduce experiments, and the final production models are available on GitHub.
抗菌肽 (AMPs) 是一种有前途的抗生素替代品,可用于对抗致病菌的耐药性。然而,开发具有高效力和特异性的 AMP 仍然是一个挑战,需要新的工具来评估抗菌活性,以加速发现过程。因此,我们提出了 MBC-Attention,这是一种多分支卷积神经网络架构和注意力机制的组合,用于预测肽对 的实验最小抑菌浓度。在从数据集随机抽取序列的三个独立测试中,最优的 MBC-Attention 模型实现了平均皮尔逊相关系数 (PCC) 为 0.775 和均方根误差 (RMSE) 为 0.533(log μM)。与 17 种传统机器学习模型和使用随机森林和支持向量机优化调整的 2 种模型相比,这分别提高了 5-12%的 PCC 和 6-13%的 RMSE。消融研究证实,所提出的两种注意力机制,全局注意力和局部注意力,对性能的提高有很大的贡献。重要性抗菌肽 (AMPs) 是替代传统抗生素、对抗致病菌耐药性的潜在候选物。因此,有必要定量评估 AMP 的抗菌活性。然而,湿实验室实验既费力又耗时。为了加速评估过程,我们开发了一种名为 MBC-Attention 的深度学习方法,用于回归 AMP 对 的实验最小抑菌浓度。所提出的模型优于传统的机器学习方法。数据、可重现实验的脚本和最终的生产模型可在 GitHub 上获得。