Wang Xiang, Shi Hui, Szanyi János
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
Nat Commun. 2017 Sep 11;8(1):513. doi: 10.1038/s41467-017-00558-9.
Catalytic CO conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. Here we show the correlation between the kinetics of product formation and those of surface species conversion during CO reduction over Pd/AlO catalysts. The operando transmission FTIR/SSITKA (Fourier transform infrared spectroscopy/steady-state isotopic transient kinetic analysis) experiments demonstrates that the rate-determining step for CO formation is the conversion of adsorbed formate, whereas that for CH formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH and CO. We apply this knowledge to the catalyst design and achieve high selectivities to desired products.Understanding the mechanism of CO reduction on a catalyst surface is essential for achieving the desired product selectivity. Here, the authors show an operando kinetic analysis of CO hydrogenation over a palladium catalyst in order to address the factors governing the selectivity of the process.
将催化一氧化碳转化为能量载体和中间体对于实现能源和环境目标至关重要。然而,由于对反应机理缺乏基本了解,设计选择性催化剂的效率很低。在此,我们展示了在Pd/AlO催化剂上CO还原过程中产物生成动力学与表面物种转化动力学之间的相关性。原位透射傅里叶变换红外光谱/稳态同位素瞬变动力学分析(FTIR/SSITKA)实验表明,CO生成的速率决定步骤是吸附甲酸盐的转化,而CH生成的速率决定步骤是吸附羰基的氢化。吸附甲酸盐和羰基之间氢化动力学的平衡决定了对CH和CO的选择性。我们将这一知识应用于催化剂设计,并实现了对所需产物的高选择性。了解催化剂表面上CO还原的机理对于实现所需的产物选择性至关重要。在此,作者展示了对钯催化剂上CO氢化的原位动力学分析,以解决控制该过程选择性的因素。