State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, P. R. China.
J Am Chem Soc. 2023 Mar 15;145(10):5769-5777. doi: 10.1021/jacs.2c12632. Epub 2023 Mar 2.
A series of novel surface Ru-H bipyridine complexes-grafted TiO nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO to CH with H as electron and proton donors under visible light irradiation. The selectivity toward CH increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 μL·g·h for CH production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO methanation. The spectral characterizations indicated clearly that the formation of CO radicals by single electron reduction of CO molecules adsorbed on surface oxygen vacancies of TiO nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH and HO in the presence of H.
首次通过表面有机金属化学与后合成配体交换相结合的方法制备了一系列新型表面 Ru-H 联吡啶配合物修饰的 TiO2 纳米杂化材料,用于在可见光照射下以 H 作为电子和质子供体,将 CO 光催化转化为 CH。通过用表面环戊二烯基(Cp)-RuH 配合物交换 4,4'-二甲基-2,2'-联吡啶(4,4'-bpy),选择性地提高到 93.4%,并且 CO 甲烷化活性提高了 4.4 倍。在最佳光催化剂上,CH 的产率达到了 241.2 μL·g·h-1。飞秒瞬态红外吸收结果表明,光激发表面 4,4'-bpy-RuH 配合物中的热电子在 0.9 ps 内快速注入 TiO2 纳米粒子的导带中,形成具有约 50.0 ns 平均寿命的电荷分离态,这有利于 CO 甲烷化。光谱特征清楚地表明,CO 分子在 TiO2 纳米粒子表面氧空位上通过单电子还原形成 CO 自由基,是甲烷化的最关键步骤。这些自由基中间体插入所研究的 Ru-H 键中,生成 Ru-OOCH 物种,最终在 H 的存在下生成 CH 和 HO。