Freeman Benjamin W J, Evans Chris D, Musarika Samuel, Morrison Ross, Newman Thomas R, Page Susan E, Wiggs Giles F S, Bell Nicholle G A, Styles David, Wen Yuan, Chadwick David R, Jones Davey L
School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK.
UK Centre for Ecology and Hydrology, Bangor, Gwynedd, UK.
Glob Chang Biol. 2022 Jun;28(12):3795-3811. doi: 10.1111/gcb.16152. Epub 2022 Mar 17.
Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio-economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co-creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation.
排水后的低地农业泥炭地是温室气体排放热点地区,也是大量但脆弱的不可恢复碳储存地。它们的土壤流失率约为每年2.0厘米,估计占全球农田排放量的32%,而产出的作物千卡热量仅占1.1%。二氧化碳排放占其陆地温室气体排放的80%以上,且在很大程度上受地下水位深度控制。因此,降低排水深度对于泥炭地的合理管理至关重要。泥炭地恢复可以大幅减少排放。然而,这可能与维持生产性利用、保障粮食安全和生计的社会需求相冲突。因此,需要湿地农业战略来使农业适应泥炭地的湿地特性,并在无法立即停止排放的情况下,平衡温室气体减排与生产力之间的关系。沼泽地栽培可能大幅减少温室气体排放,但在当前经济形势下并非总是可行。降低排水强度系统可能会部分降低排放速率,对现有系统的改动较小。这些折中的系统在采用时可能面临较少障碍,并将环境危害降至最低,直到社会条件有利于能够停止排放的战略。湿地农业将面临农艺、社会经济和水资源管理方面的挑战,需要谨慎实施。利益相关者之间价值观和优先事项的多样性可能引发冲突。成功实施需要参与式研究方法和共同创造可行的解决方案。政策制定者、私营部门资助者和研究人员可发挥关键作用,但采用风险主要将落在土地管理者身上。建立一个强大的湿地农业范式对于实现有弹性的生产系统和更广泛的环境效益至关重要。合理利用的挑战为重新思考泥炭地管理提供了契机,可创造繁荣、创新和绿色的湿地景观,造福每个人的未来,同时为全球气候变化缓解做出重要贡献。