IEEE Trans Med Imaging. 2022 Aug;41(8):2118-2129. doi: 10.1109/TMI.2022.3156868. Epub 2022 Aug 1.
High angular resolution diffusion imaging (HARDI) is a type of diffusion magnetic resonance imaging (dMRI) that measures diffusion signals on a sphere in q-space. It has been widely used in data acquisition for human brain structural connectome analysis. To more accurately estimate the structural connectome, dense samples in q-space are often acquired, potentially resulting in long scanning times and logistical challenges. This paper proposes a statistical method to select q-space directions optimally and estimate the local diffusion function from sparse observations. The proposed approach leverages relevant historical dMRI data to calculate a prior distribution to characterize local diffusion variability in each voxel in a template space. For a new subject to be scanned, the priors are mapped into the subject-specific coordinate and used to help select the best q-space samples. Simulation studies demonstrate big advantages over the existing HARDI sampling and analysis framework. We also applied the proposed method to the Human Connectome Project data and a dataset of aging adults with mild cognitive impairment. The results indicate that with very few q-space samples (e.g., 15 or 20), we can recover structural brain networks comparable to the ones estimated from 60 or more diffusion directions with the existing methods.
高角度分辨率扩散成像(HARDI)是一种扩散磁共振成像(dMRI),它在 q 空间的球体上测量扩散信号。它已广泛应用于人类大脑结构连接组分析的数据采集。为了更准确地估计结构连接组,通常在 q 空间中采集密集的样本,这可能导致扫描时间长和物流方面的挑战。本文提出了一种统计方法,从稀疏观测中选择 q 空间方向并估计局部扩散函数。该方法利用相关的历史 dMRI 数据来计算先验分布,以描述模板空间中每个体素的局部扩散变异性。对于要扫描的新个体,将先验映射到个体特定的坐标,并用于帮助选择最佳的 q 空间样本。模拟研究表明,该方法比现有的 HARDI 采样和分析框架有很大的优势。我们还将该方法应用于人类连接组计划数据和轻度认知障碍的老年人大数据集。结果表明,使用很少的 q 空间样本(例如 15 或 20 个),我们可以恢复与现有方法从 60 个或更多扩散方向估计的结构脑网络相当的网络。