Suppr超能文献

优化扩散成像在脑结构连接组学分析中的应用。

Optimized Diffusion Imaging for Brain Structural Connectome Analysis.

出版信息

IEEE Trans Med Imaging. 2022 Aug;41(8):2118-2129. doi: 10.1109/TMI.2022.3156868. Epub 2022 Aug 1.

Abstract

High angular resolution diffusion imaging (HARDI) is a type of diffusion magnetic resonance imaging (dMRI) that measures diffusion signals on a sphere in q-space. It has been widely used in data acquisition for human brain structural connectome analysis. To more accurately estimate the structural connectome, dense samples in q-space are often acquired, potentially resulting in long scanning times and logistical challenges. This paper proposes a statistical method to select q-space directions optimally and estimate the local diffusion function from sparse observations. The proposed approach leverages relevant historical dMRI data to calculate a prior distribution to characterize local diffusion variability in each voxel in a template space. For a new subject to be scanned, the priors are mapped into the subject-specific coordinate and used to help select the best q-space samples. Simulation studies demonstrate big advantages over the existing HARDI sampling and analysis framework. We also applied the proposed method to the Human Connectome Project data and a dataset of aging adults with mild cognitive impairment. The results indicate that with very few q-space samples (e.g., 15 or 20), we can recover structural brain networks comparable to the ones estimated from 60 or more diffusion directions with the existing methods.

摘要

高角度分辨率扩散成像(HARDI)是一种扩散磁共振成像(dMRI),它在 q 空间的球体上测量扩散信号。它已广泛应用于人类大脑结构连接组分析的数据采集。为了更准确地估计结构连接组,通常在 q 空间中采集密集的样本,这可能导致扫描时间长和物流方面的挑战。本文提出了一种统计方法,从稀疏观测中选择 q 空间方向并估计局部扩散函数。该方法利用相关的历史 dMRI 数据来计算先验分布,以描述模板空间中每个体素的局部扩散变异性。对于要扫描的新个体,将先验映射到个体特定的坐标,并用于帮助选择最佳的 q 空间样本。模拟研究表明,该方法比现有的 HARDI 采样和分析框架有很大的优势。我们还将该方法应用于人类连接组计划数据和轻度认知障碍的老年人大数据集。结果表明,使用很少的 q 空间样本(例如 15 或 20 个),我们可以恢复与现有方法从 60 个或更多扩散方向估计的结构脑网络相当的网络。

相似文献

1
Optimized Diffusion Imaging for Brain Structural Connectome Analysis.优化扩散成像在脑结构连接组学分析中的应用。
IEEE Trans Med Imaging. 2022 Aug;41(8):2118-2129. doi: 10.1109/TMI.2022.3156868. Epub 2022 Aug 1.
3
Resolution and b value dependent structural connectome in ex vivo mouse brain.离体小鼠脑的分辨率和 b 值相关结构连接组学
Neuroimage. 2022 Jul 15;255:119199. doi: 10.1016/j.neuroimage.2022.119199. Epub 2022 Apr 10.
10
Time-efficient and flexible design of optimized multishell HARDI diffusion.高效灵活的优化多壳 HARDI 扩散设计。
Magn Reson Med. 2018 Mar;79(3):1276-1292. doi: 10.1002/mrm.26765. Epub 2017 May 30.

本文引用的文献

2
Mapping population-based structural connectomes.基于人群的结构连接组学图谱绘制。
Neuroimage. 2018 May 15;172:130-145. doi: 10.1016/j.neuroimage.2017.12.064. Epub 2018 Feb 3.
9
Towards quantitative connectivity analysis: reducing tractography biases.走向定量连接分析:减少轨迹分析偏差。
Neuroimage. 2014 Sep;98:266-78. doi: 10.1016/j.neuroimage.2014.04.074. Epub 2014 May 9.
10
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验