Suppr超能文献

基于高角分辨率扩散成像MRI的结构连接组:评估扩散加权和采样对图论测量的影响

Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures.

作者信息

Caiazzo Giuseppina, Fratello Michele, Di Nardo Federica, Trojsi Francesca, Tedeschi Gioacchino, Esposito Fabrizio

机构信息

MRI Research Center SUN-FISM - Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", 80131, Naples, Italy.

Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.

出版信息

Neuroradiology. 2018 May;60(5):497-504. doi: 10.1007/s00234-018-2003-7. Epub 2018 Mar 8.

Abstract

PURPOSE

Advances in computational network analysis have enabled the characterization of topological properties of human brain networks (connectomics) from high angular resolution diffusion imaging (HARDI) MRI structural measurements. In this study, the effect of changing the diffusion weighting (b value) and sampling (number of gradient directions) was investigated in ten healthy volunteers, with specific focus on graph theoretical network metrics used to characterize the human connectome.

METHODS

Probabilistic tractography based on the Q-ball reconstruction of HARDI MRI measurements was performed and structural connections between all pairs of regions from the automated anatomical labeling (AAL) atlas were estimated, to compare two HARDI schemes: low b value (b = 1000) and low direction number (n = 32) (LBLD); high b value (b = 3000) and high number (n = 54) of directions (HBHD).

RESULTS

LBLD and HBHD data sets produced connectome images with highly overlapping hub structure. Overall, the HBHD scheme yielded significantly higher connection probabilities between cortical and subcortical sites and allowed detecting more connections. Small worldness and modularity were reduced in HBHD data. The clustering coefficient was significantly higher in HBHD data indicating a higher level of segregation in the resulting connectome for the HBHD scheme.

CONCLUSION

Our results demonstrate that the HARDI scheme as an impact on structural connectome measures which is not automatically implied by the tractography outcome. As the number of gradient directions and b values applied may introduce a bias in the assessment of network properties, the choice of a given HARDI protocol must be carefully considered when comparing results across connectomic studies.

摘要

目的

计算网络分析的进展使得从高角分辨率扩散成像(HARDI)MRI结构测量中表征人类脑网络(连接组学)的拓扑特性成为可能。在本研究中,我们在10名健康志愿者中研究了改变扩散权重(b值)和采样(梯度方向数量)的影响,特别关注用于表征人类连接组的图论网络指标。

方法

基于HARDI MRI测量的Q球重建进行概率纤维束成像,并估计自动解剖标记(AAL)图谱中所有区域对之间的结构连接,以比较两种HARDI方案:低b值(b = 1000)和低方向数(n = 32)(LBLD);高b值(b = 3000)和高方向数(n = 54)(HBHD)。

结果

LBLD和HBHD数据集产生的连接组图像具有高度重叠的中心结构。总体而言,HBHD方案在皮质和皮质下部位之间产生了显著更高的连接概率,并允许检测到更多连接。HBHD数据中的小世界性质和模块化程度降低。HBHD数据中的聚类系数显著更高,表明HBHD方案在所得连接组中的隔离水平更高。

结论

我们的结果表明,HARDI方案对结构连接组测量有影响,而这并非纤维束成像结果自动暗示的。由于应用的梯度方向数量和b值可能会在网络属性评估中引入偏差,因此在比较不同连接组学研究的结果时,必须仔细考虑给定HARDI协议的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c69/5906499/2b21c93335cb/234_2018_2003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验