UCL Mechanical Engineering, University College London, WC1E 7JE, London, UK.
Research Complex at Harwell, Harwell Campus, Didcot, OX11 0FA, UK.
Nat Commun. 2022 Mar 4;13(1):1170. doi: 10.1038/s41467-022-28694-x.
Keyhole porosity is a key concern in laser powder-bed fusion (LPBF), potentially impacting component fatigue life. However, some keyhole porosity formation mechanisms, e.g., keyhole fluctuation, collapse and bubble growth and shrinkage, remain unclear. Using synchrotron X-ray imaging we reveal keyhole and bubble behaviour, quantifying their formation dynamics. The findings support the hypotheses that: (i) keyhole porosity can initiate not only in unstable, but also in the transition keyhole regimes created by high laser power-velocity conditions, causing fast radial keyhole fluctuations (2.5-10 kHz); (ii) transition regime collapse tends to occur part way up the rear-wall; and (iii) immediately after keyhole collapse, bubbles undergo rapid growth due to pressure equilibration, then shrink due to metal-vapour condensation. Concurrent with condensation, hydrogen diffusion into the bubble slows the shrinkage and stabilises the bubble size. The keyhole fluctuation and bubble evolution mechanisms revealed here may guide the development of control systems for minimising porosity.
匙孔孔隙率是激光粉末床熔合(LPBF)中的一个关键问题,可能会影响组件的疲劳寿命。然而,一些匙孔孔隙形成机制,例如匙孔的波动、塌陷和气泡的生长和收缩,仍然不清楚。我们使用同步加速器 X 射线成像来揭示匙孔和气泡的行为,定量描述它们的形成动力学。研究结果支持以下假设:(i)匙孔孔隙不仅可以在不稳定的情况下形成,而且可以在由高激光功率-速度条件产生的过渡匙孔区形成,导致快速的径向匙孔波动(2.5-10 kHz);(ii)过渡区塌陷往往发生在后壁的中途;(iii)在匙孔塌陷后,由于压力平衡,气泡会迅速生长,然后由于金属蒸汽冷凝而收缩。与此同时,氢气向气泡中的扩散会减缓收缩并稳定气泡尺寸。这里揭示的匙孔波动和气泡演化机制可能为最小化孔隙率的控制系统的开发提供指导。