Suppr超能文献

iTTCA-Hybrid:通过利用混合特征表示来改进和增强肿瘤 T 细胞抗原的识别。

iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation.

机构信息

Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.

Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.

出版信息

Anal Biochem. 2020 Jun 15;599:113747. doi: 10.1016/j.ab.2020.113747. Epub 2020 Apr 22.

Abstract

In spite of the repertoire of existing cancer therapies, the ongoing recurrence and new cases of cancer poses a challenging health concern that prompts for novel and effective treatment. Cancer immunotherapy represents a promising venue for treatment by harnessing the body's immune system to combat cancer. Therefore, the identification of tumor T cell antigen represents an exciting area to explore. Computational tools have been instrumental in the identification of tumor T cell antigens and it is highly desirable to attain highly accurate models in a timely fashion from large volumes of peptides generated in the post-genomic era. In this study, we present a reliable, accurate, unbiased and automated sequence-based predictor named iTTCA-Hybrid for identifying tumor T cell antigens. The iTTCA-Hybrid approach proposed herein employs two robust machine learning models (e.g. support vector machine and random forest) constructed using five feature encoding strategies (i.e. amino acid composition, dipeptide composition, pseudo amino acid composition, distribution of amino acid properties in sequences and physicochemical properties derived from the AAindex). Rigorous independent test indicated that the iTTCA-Hybrid approach achieved an accuracy and area under the curve of 73.60% and 0.783, respectively, which corresponds to 4% and 7% performance increase than those of existing methods thereby indicating the superiority of the proposed model. To the best of our knowledge, the iTTCA-Hybrid is the first free web server (Available at http://camt.pythonanywhere.com/iTTCA-Hybrid) for identifying tumor T cell antigens presented by the MHC class I. The proposed web server allows robust predictions to be made without the need to develop in-house prediction models.

摘要

尽管现有的癌症治疗方法很多,但癌症的持续复发和新病例仍然是一个严峻的健康问题,需要新的、有效的治疗方法。癌症免疫疗法是一种有前途的治疗方法,它利用人体的免疫系统来对抗癌症。因此,鉴定肿瘤 T 细胞抗原是一个令人兴奋的探索领域。计算工具在鉴定肿瘤 T 细胞抗原方面发挥了重要作用,从后基因组时代产生的大量肽中及时获得高度准确的模型是非常理想的。在这项研究中,我们提出了一种可靠、准确、无偏倚和自动化的基于序列的预测器 iTTCA-Hybrid,用于鉴定肿瘤 T 细胞抗原。本文提出的 iTTCA-Hybrid 方法采用了两种强大的机器学习模型(例如支持向量机和随机森林),这些模型是使用五种特征编码策略(即氨基酸组成、二肽组成、伪氨基酸组成、序列中氨基酸性质的分布和从 AAindex 导出的物理化学性质)构建的。严格的独立测试表明,iTTCA-Hybrid 方法的准确性和曲线下面积分别为 73.60%和 0.783,分别比现有方法提高了 4%和 7%,这表明了所提出模型的优越性。据我们所知,iTTCA-Hybrid 是第一个用于鉴定 MHC Ⅰ类呈递的肿瘤 T 细胞抗原的免费网络服务器(可在 http://camt.pythonanywhere.com/iTTCA-Hybrid 访问)。该网络服务器允许进行稳健的预测,而无需开发内部预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验