Suppr超能文献

ConCeptCNN:一种新型多滤波器卷积神经网络,用于通过脑连接组学预测神经发育障碍。

ConCeptCNN: A novel multi-filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome.

机构信息

Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Department of Electrical, Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA.

出版信息

Med Phys. 2022 May;49(5):3171-3184. doi: 10.1002/mp.15545. Epub 2022 Mar 14.

Abstract

BACKGROUND

Deep convolutional neural network (CNN) and its derivatives have recently shown great promise in the prediction of brain disorders using brain connectome data. Existing deep CNN methods using single global row and column convolutional filters have limited ability to extract discriminative information from brain connectome for prediction tasks.

PURPOSE

This paper presents a novel deep Connectome-Inception CNN (ConCeptCNN) model, which is developed based on multiple convolutional filters. The proposed model is used to extract topological features from brain connectome data for neurological disorders classification and analysis.

METHODS

The ConCeptCNN uses multiple vector-shaped filters extract topological information from the brain connectome at different levels for complementary feature embeddings of brain connectome. The proposed model is validated using two datasets: the Neuro Bureau ADHD-200 dataset and the Cincinnati Early Prediction Study (CINEPS) dataset.

RESULTS

In a cross-validation experiment, the ConCeptCNN achieved a prediction accuracy of 78.7% for the detection of attention deficit hyperactivity disorder (ADHD) in adolescents and an accuracy of 81.6% for the prediction of cognitive deficits at 2 years corrected age in very preterm infants. In addition to the classification tasks, the ConCeptCNN identified several brain regions that are discriminative to neurodevelopmental disorders.

CONCLUSIONS

We compared the ConCeptCNN with several peer CNN methods. The results demonstrated that proposed model improves overall classification performance of neurodevelopmental disorders prediction tasks.

摘要

背景

深度卷积神经网络(CNN)及其衍生模型最近在使用脑连接组数据预测脑疾病方面表现出了巨大的潜力。现有的使用单一全局行和列卷积滤波器的深度 CNN 方法从脑连接组中提取用于预测任务的判别信息的能力有限。

目的

本文提出了一种新颖的深度连接组 inception CNN(ConCeptCNN)模型,该模型基于多个卷积滤波器构建。所提出的模型用于从脑连接组数据中提取拓扑特征,以对神经疾病进行分类和分析。

方法

ConCeptCNN 使用多个向量形状的滤波器从脑连接组中以不同的级别提取拓扑信息,以实现脑连接组的互补特征嵌入。该模型使用两个数据集进行验证:神经局 ADHD-200 数据集和辛辛那提早期预测研究(CINEPS)数据集。

结果

在交叉验证实验中,ConCeptCNN 对青少年注意力缺陷多动障碍(ADHD)的检测达到了 78.7%的预测准确率,对非常早产儿 2 年校正年龄的认知缺陷的预测准确率达到了 81.6%。除了分类任务外,ConCeptCNN 还确定了一些对神经发育障碍具有判别力的脑区。

结论

我们将 ConCeptCNN 与几种同行 CNN 方法进行了比较。结果表明,所提出的模型提高了神经发育障碍预测任务的整体分类性能。

相似文献

引用本文的文献

3
Focused review on artificial intelligence for disease detection in infants.关于人工智能用于婴儿疾病检测的重点综述。
Front Digit Health. 2024 Nov 25;6:1459640. doi: 10.3389/fdgth.2024.1459640. eCollection 2024.

本文引用的文献

6
3D-CNN based discrimination of schizophrenia using resting-state fMRI.基于 3D-CNN 的静息态 fMRI 鉴别精神分裂症。
Artif Intell Med. 2019 Jul;98:10-17. doi: 10.1016/j.artmed.2019.06.003. Epub 2019 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验