Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, United States.
Department of Neurology, Groningen University Medical Center, Groningen, Netherlands.
Prog Brain Res. 2022;269(1):345-371. doi: 10.1016/bs.pbr.2022.01.011. Epub 2022 Feb 4.
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
中枢神经系统胆碱能系统功能障碍和退化是帕金森病(PD)多系统病理学的重要组成部分。我们回顾了人类中枢神经系统胆碱能系统的基本结构和研究人类胆碱能系统变化的可用工具。早期的尸检研究表明,基底前脑皮质投射胆碱能(BFCC)和脚桥被盖核-外侧被盖核(PPN-LDT)胆碱能投射的异常分别与认知缺陷和步态-平衡缺陷有关。最近应用成像方法,特别是分子成像,使得更复杂的临床特征与区域性胆碱能缺陷相关联成为可能。BFCC 投射缺陷与一般和特定领域的认知缺陷相关,特别是注意力和执行功能。详细分析表明,在突显和扣带-额顶叶任务控制网络内的胆碱能缺陷,包括新皮质、丘脑和纹状体节点,是无痴呆 PD 患者认知缺陷的重要组成部分。BFCC 和 PPN-LDT 胆碱能投射系统以及纹状体胆碱能中间神经元(SChI)的异常都与 PD 步态-平衡障碍有关。在实验研究的背景下,这些结果表明 BFCC 和 PPN-LDT 胆碱能系统注意力功能的破坏是步态-平衡功能受损的基础。SChI 功能障碍可能会损害注意力和运动信息在纹状体内部的整合。丘脑和内嗅皮层胆碱能缺失可能会损害多感官整合。中枢神经系统系统的明显退化可能是由于黑质纹状体多巴胺能缺失而导致胆碱能神经元活动增加以进行代偿。随后胆碱能系统的功能障碍和退化揭示并加剧了由于多巴胺能神经支配缺失而导致的功能缺陷。对 PD 中中枢神经系统胆碱能系统功能障碍的研究需要采用系统水平的方法来理解 PD 病理生理学。