Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany.
Sci Rep. 2023 Aug 16;13(1):13341. doi: 10.1038/s41598-023-39826-8.
Magnetic resonance imaging (MRI) is widely used for ischemic stroke lesion detection in mice. A challenge is that lesion segmentation often relies on manual tracing by trained experts, which is labor-intensive, time-consuming, and prone to inter- and intra-rater variability. Here, we present a fully automated ischemic stroke lesion segmentation method for mouse T2-weighted MRI data. As an end-to-end deep learning approach, the automated lesion segmentation requires very little preprocessing and works directly on the raw MRI scans. We randomly split a large dataset of 382 MRI scans into a subset (n = 293) to train the automated lesion segmentation and a subset (n = 89) to evaluate its performance. We compared Dice coefficients and accuracy of lesion volume against manual segmentation, as well as its performance on an independent dataset from an open repository with different imaging characteristics. The automated lesion segmentation produced segmentation masks with a smooth, compact, and realistic appearance that are in high agreement with manual segmentation. We report dice scores higher than the agreement between two human raters reported in previous studies, highlighting the ability to remove individual human bias and standardize the process across research studies and centers.
磁共振成像(MRI)广泛用于检测小鼠的缺血性脑卒中病灶。一个挑战是病灶分割通常依赖于经过训练的专家进行手动追踪,这既费时费力,又容易出现观察者内和观察者间的变异性。在这里,我们提出了一种用于小鼠 T2 加权 MRI 数据的全自动缺血性脑卒中病灶分割方法。作为一种端到端的深度学习方法,自动化病灶分割几乎不需要预处理,可以直接对原始 MRI 扫描进行操作。我们将一个包含 382 个 MRI 扫描的大型数据集随机划分为一个子集(n = 293),用于训练自动病灶分割,以及一个子集(n = 89)用于评估其性能。我们比较了病灶体积的 Dice 系数和准确性与手动分割的差异,以及在具有不同成像特征的开放存储库中的独立数据集上的性能。自动化病灶分割生成的分割掩模具有平滑、紧凑和逼真的外观,与手动分割高度一致。我们报告的 Dice 评分高于之前研究中报道的两名人类观察者之间的一致性,这突出了消除个体人类偏见和在研究和中心之间标准化该过程的能力。