Suppr超能文献

碳酸氢二甲双胍介导的高效RNA干扰用于精准靶向结肠癌和直肠癌中的缺陷

Metformin Bicarbonate-Mediated Efficient RNAi for Precise Targeting of Deficiency in Colon and Rectal Cancers.

作者信息

Xu Jiangsheng, Liu Yunhua, Liu Sheng, Ou Wenquan, White Alisa, Stewart Samantha, Tkaczuk Katherine H R, Ellis Lee M, Wan Jun, Lu Xiongbin, He Xiaoming

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.

Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Nano Today. 2022 Apr;43. doi: 10.1016/j.nantod.2022.101406. Epub 2022 Feb 1.

Abstract

Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of , an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon cancer is significantly reduced in the patients with the cancer harboring such deletion, although such reduction is not observed for rectal cancer. Unfortunately, direct targeting has been unsuccessful for cancer therapy. Interestingly, , a gene essential for cell survival and proliferation, is almost always deleted together with in colon and rectal cancers. Therefore, RNA interference (RNAi) with small interfering RNAs (siRNAs) to precisely target/inhibit may be an effective strategy for selectively killing cancer cells with deficiency. However, the difficulty of delivering siRNAs specifically into the cytosol where they perform their function, is a major barrier for siRNA-based therapies. Here, metformin bicarbonate (MetC) is synthesized to develop pH-responsive MetC-nanoparticles with a unique "bomb" for effective cytosolic delivery of siRNA, which greatly facilitates its endo/lysosomal escape into the cytosol and augments its therapeutic efficacy of cancer harboring deficiency. Moreover, the MetC-based nanoparticles without functional siRNA show notable therapeutic effect with no evident toxicity or immunogenicity.

摘要

结肠癌和直肠癌是美国癌症相关死亡的主要原因,因此需要有效的靶向治疗方法来治疗这些癌症。我们的基因组分析表明,重要的肿瘤抑制基因半合子缺失在这两种癌症中都非常常见,在患有这种缺失的结肠癌患者中,更常见的结肠癌患者的5年生存率显著降低,尽管直肠癌患者未观察到这种降低。不幸的是,直接靶向治疗癌症尚未成功。有趣的是,细胞存活和增殖所必需的基因在结肠癌和直肠癌中几乎总是与一起缺失。因此,用小干扰RNA(siRNA)进行RNA干扰(RNAi)以精确靶向/抑制可能是选择性杀死缺乏的癌细胞的有效策略。然而,将siRNA特异性递送到其发挥功能的细胞质中存在困难,这是基于siRNA的治疗的主要障碍。在这里,合成了碳酸氢二甲双胍(MetC),以开发具有独特“炸弹”的pH响应性MetC纳米颗粒,用于将siRNA有效递送到细胞质中,这极大地促进了其从内体/溶酶体逃逸到细胞质中,并增强了其对缺乏的癌症的治疗效果。此外,不含功能性siRNA的基于MetC的纳米颗粒显示出显著的治疗效果,且没有明显的毒性或免疫原性。

相似文献

1
Metformin Bicarbonate-Mediated Efficient RNAi for Precise Targeting of Deficiency in Colon and Rectal Cancers.
Nano Today. 2022 Apr;43. doi: 10.1016/j.nantod.2022.101406. Epub 2022 Feb 1.
2
Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer.
Nat Nanotechnol. 2019 Apr;14(4):388-397. doi: 10.1038/s41565-019-0381-6. Epub 2019 Feb 25.
3
TP53 loss creates therapeutic vulnerability in colorectal cancer.
Nature. 2015 Apr 30;520(7549):697-701. doi: 10.1038/nature14418. Epub 2015 Apr 22.
4
Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A.
Cancer Gene Ther. 2009 Jun;16(6):532-8. doi: 10.1038/cgt.2008.104. Epub 2009 Jan 23.
5
Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis.
Biomaterials. 2014 Aug;35(25):7214-27. doi: 10.1016/j.biomaterials.2014.05.009. Epub 2014 May 27.
6
Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
Eur J Pharm Biopharm. 2011 Apr;77(3):438-49. doi: 10.1016/j.ejpb.2010.11.007. Epub 2010 Nov 18.
8
Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.
Bioconjug Chem. 2016 Jan 20;27(1):19-35. doi: 10.1021/acs.bioconjchem.5b00538. Epub 2015 Dec 17.
10
Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo.
J Control Release. 2022 Sep;349:831-843. doi: 10.1016/j.jconrel.2022.07.041. Epub 2022 Aug 3.

引用本文的文献

1
Radioresistance in rectal cancer: can nanoparticles turn the tide?
Mol Cancer. 2025 Jan 30;24(1):35. doi: 10.1186/s12943-025-02232-x.
3
Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance.
iScience. 2024 May 30;27(7):110150. doi: 10.1016/j.isci.2024.110150. eCollection 2024 Jul 19.
4
Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials.
Nano Res. 2023;16(5):7248-7259. doi: 10.1007/s12274-023-5374-3. Epub 2023 Feb 28.
6
Nanotechnology for research and treatment of the intestine.
J Nanobiotechnology. 2022 Sep 29;20(1):430. doi: 10.1186/s12951-022-01517-3.

本文引用的文献

1
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
2
Nanoscale systems for local drug delivery.
Nano Today. 2019 Oct;28. doi: 10.1016/j.nantod.2019.100765. Epub 2019 Aug 26.
4
Stimuli-Responsive Polymer-Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy.
Nano Lett. 2019 Sep 11;19(9):5967-5974. doi: 10.1021/acs.nanolett.9b01660. Epub 2019 Aug 7.
5
Strategies, design, and chemistry in siRNA delivery systems.
Adv Drug Deliv Rev. 2019 Apr;144:133-147. doi: 10.1016/j.addr.2019.05.004. Epub 2019 May 15.
6
RNAi therapeutic and its innovative biotechnological evolution.
Biotechnol Adv. 2019 Sep-Oct;37(5):801-825. doi: 10.1016/j.biotechadv.2019.04.012. Epub 2019 Apr 26.
7
A ribonucleoprotein octamer for targeted siRNA delivery.
Nat Biomed Eng. 2018 May;2(5):326-337. doi: 10.1038/s41551-018-0214-1. Epub 2018 Apr 2.
8
Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer.
Nat Nanotechnol. 2019 Apr;14(4):388-397. doi: 10.1038/s41565-019-0381-6. Epub 2019 Feb 25.
9
Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer.
Nat Commun. 2018 Nov 9;9(1):4718. doi: 10.1038/s41467-018-07264-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验