Department of Chemical and Petroleum Engineering, University of Calgarygrid.22072.35, Calgary, Canada.
Department of Biological Sciences, University of Calgarygrid.22072.35, Calgary, Canada.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0232121. doi: 10.1128/aem.02321-21. Epub 2022 Mar 15.
A wide range of bacteria can synthesize surface-associated nanoparticles (SANs) through exogenous metal ions reacting with sulfide produced via cysteine metabolism, resulting in the emergence of a biological-nanoparticle hybrid (bionanohybrid). The attached nanoparticles may couple to extracellular electron transfer, facilitating photoelectrochemical processes. While SAN-cell coupling in hybrid organisms is opening a range of biotechnological possibilities, observation of bionanohybrids in nature is not commonly reported and their lab-based behavior remains difficult to control. We describe the critical role environmental synergy (microbial growth stage, cell densities, cysteine, and exogenous metal concentrations) plays in controlling the form and occurrence of Escherichia coli and Moorella thermoacetica bionanohybrids. SAN development depends on an appropriate cell density to metal ratio, with too few cells resulting in nanoparticle suppression through cytotoxicity or inhibition of cysteine conversion, and with too many cells diluting the number and size of particles produced. This cell number is governed by the concentration of cysteine present, which acts to protect the cells from metal ion toxicity. Exposing cells to metal and cysteine during the lag phase leads to SAN development, whereas cells in the exponential growth phase predominantly produce dispersed nanoparticles. Applying these principles more broadly, E. coli is shown to biosynthesize composite Bi/Cu sulfide SANs, and Clostridioides difficile can be coaxed into a bionanohybrid lifestyle by fine-tuning the cysteine dosage. Bionanohybrids maintain a remarkable ability for binary fission and sustained growth, opening doors to the production of SANs tailored to specific technological functions. Some bacteria can produce nanoscale-sized particles, which remain attached to the surface of the organism. The surface association of these nanoparticles creates a new mode of interaction between the microbe's environment and its internal cellular function, giving rise to a new hybrid lifeform, a biological nanoparticle hybrid (bionanohybrid). These hybrid organisms gain new or enhanced biological functions, and thus their creation opens a wide range of biotechnological possibilities. Despite this potential, the fundamental controls on bionanohybrid formation and occurrence remain poorly constrained. In this study, Escherichia coli K-12, Moorella thermoacetica, and Clostridioides difficile were used to test the combined influences of the growth phase, cell density, cysteine dose, and metal concentration in determining single and composite metal sulfide surface-associated nanoparticle production. The significance of this study is that it defined the critical synergies controlling nanoparticle formation on bacterial cell surfaces, unlocking the potential for bionanohybrid applications in a range of organisms.
许多细菌可以通过细胞内半胱氨酸代谢产生的硫化物与外源金属离子反应,合成与细胞表面结合的纳米颗粒(SANs),从而形成生物-纳米颗粒杂合体(bionanohybrid)。结合的纳米颗粒可能与细胞外电子转移偶联,从而促进光电化学过程。尽管混合生物体中的 SAN-细胞偶联正在开辟一系列生物技术可能性,但在自然界中观察到生物纳米杂合体的情况并不常见,并且它们在实验室中的行为仍然难以控制。我们描述了环境协同作用(微生物生长阶段、细胞密度、半胱氨酸和外源金属浓度)在控制大肠杆菌和热醋酸穆尔氏菌生物纳米杂合体的形态和发生中的关键作用。SAN 的发展取决于适当的细胞与金属比值,细胞过少会导致纳米颗粒因细胞毒性或半胱氨酸转化抑制而被抑制,细胞过多会稀释产生的颗粒数量和大小。细胞数量由存在的半胱氨酸浓度控制,半胱氨酸可以保护细胞免受金属离子毒性的影响。在滞后期将细胞暴露于金属和半胱氨酸中会导致 SAN 的发展,而在指数生长期的细胞主要产生分散的纳米颗粒。更广泛地应用这些原则,表明大肠杆菌可以生物合成复合 Bi/Cu 硫化物 SAN,并且通过精细调整半胱氨酸剂量,可以诱使艰难梭菌进入生物纳米杂合体生活方式。生物纳米杂合体保持了二分分裂和持续生长的惊人能力,为生产针对特定技术功能的 SAN 开辟了道路。 有些细菌可以产生纳米级大小的颗粒,这些颗粒仍然附着在生物体的表面。这些纳米颗粒的表面结合创造了微生物环境与其内部细胞功能之间新的相互作用模式,产生了一种新的混合生命形式,即生物纳米颗粒杂合体(bionanohybrid)。这些混合生物体获得了新的或增强的生物学功能,因此它们的产生开辟了广泛的生物技术可能性。尽管有这种潜力,但生物纳米杂合体形成和发生的基本控制仍然受到很大限制。在这项研究中,使用大肠杆菌 K-12、热醋酸穆尔氏菌和艰难梭菌来测试生长阶段、细胞密度、半胱氨酸剂量和金属浓度的综合影响,以确定单金属和复合金属硫化物表面结合的纳米颗粒的产生。这项研究的意义在于它定义了控制细菌细胞表面纳米颗粒形成的关键协同作用,为一系列生物体中的生物纳米杂合体应用开辟了潜力。