College of Life Science, Northeast Forestry University, Harbin 150040, China.
Int J Mol Sci. 2024 Mar 7;25(6):3085. doi: 10.3390/ijms25063085.
Nanoparticles (NPs) represent a potential optoelectronic source capable of significantly boosting hydrogen production; however, their inevitable cytotoxicity may lead to oxidative damage of bacterial cell membranes. In this study, we employed non-photosynthetic K-12 as a model organism and utilized self-assembled cadmium sulfide (CdS) nanoparticles to construct a low-toxicity and hydrogen-production-enhancing self-photosensitive hybrid system. To mitigate the cytotoxicity of CdS NPs and synthesize biocompatible CdS NPs on the cell surface, we employed engineered (/OE) for bioremediation, achieving this goal through the overexpression of the peroxidase enzyme (EfeB). A comparative analysis with -CdS revealed a significant downregulation of genes encoding oxidative stress proteins in /OE-CdS post-irradiation. Atomic force microscopy (AFM) confirmed the stability of bacterial cell membranes. Due to the enhanced stability of the cell membrane, the hydrogen yield of the /OE-CdS system increased by 1.3 times compared to the control, accompanied by a 49.1% reduction in malondialdehyde (MDA) content. This study proposes an effective strategy to alleviate the toxicity of mixed biological nanoparticle systems and efficiently harness optoelectronic electrons, thereby achieving higher hydrogen production in bioremediation.
纳米粒子 (NPs) 是一种潜在的光电源,能够显著提高氢气的产量;然而,它们不可避免的细胞毒性可能导致细菌细胞膜的氧化损伤。在本研究中,我们采用非光合的 K-12 作为模型生物,并利用自组装的硫化镉 (CdS) 纳米粒子构建了一种低毒性且能提高产氢量的自敏化混合系统。为了减轻 CdS NPs 的细胞毒性并在细胞表面合成生物相容性的 CdS NPs,我们采用了工程菌 (/OE) 进行生物修复,通过过表达过氧化物酶 (EfeB) 来实现这一目标。与 -CdS 的比较分析表明,/OE-CdS 经辐照后编码氧化应激蛋白的基因显著下调。原子力显微镜 (AFM) 证实了细菌细胞膜的稳定性。由于细胞膜稳定性的提高,/OE-CdS 系统的氢气产量比对照组提高了 1.3 倍,同时丙二醛 (MDA) 含量降低了 49.1%。本研究提出了一种有效策略,可减轻混合生物纳米粒子系统的毒性,并有效地利用光电电子,从而在生物修复中实现更高的氢气产量。