Suppr超能文献

为什么诺特定理适用于统计力学。

Why Noether's theorem applies to statistical mechanics.

作者信息

Hermann Sophie, Schmidt Matthias

机构信息

Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany.

出版信息

J Phys Condens Matter. 2022 Apr 21;34(21). doi: 10.1088/1361-648X/ac5b47.

Abstract

Noether's theorem is familiar to most physicists due its fundamental role in linking the existence of conservation laws to the underlying symmetries of a physical system. Typically the systems are described in the particle-based context of classical mechanics or on the basis of field theory. We have recently shown (2021176) that Noether's reasoning also applies to thermal systems, where fluctuations are paramount and one aims for a statistical mechanical description. Here we give a pedagogical introduction based on the canonical ensemble and apply it explicitly to ideal sedimentation. The relevant mathematical objects, such as the free energy, are viewed as functionals. This vantage point allows for systematic functional differentiation and the resulting identities express properties of both macroscopic average forces and molecularly resolved correlations in many-body systems, both in and out-of-equilibrium, and for active Brownian particles. To provide further background, we briefly describe the variational principles of classical density functional theory, of power functional theory, and of classical mechanics.

摘要

诺特定理为大多数物理学家所熟知,因为它在将守恒定律的存在与物理系统的基本对称性联系起来方面起着基础性作用。通常,这些系统是在经典力学的基于粒子的背景下或在场论的基础上进行描述的。我们最近表明(2021176),诺特的推理也适用于热系统,在热系统中涨落至关重要,并且人们旨在进行统计力学描述。在此,我们基于正则系综给出一个教学性介绍,并将其明确应用于理想沉降。诸如自由能等相关数学对象被视为泛函。这个观点允许进行系统的泛函微分,并且由此产生的恒等式表达了多体系统中宏观平均力和分子分辨关联的性质,无论是在平衡态还是非平衡态,以及对于活性布朗粒子。为了提供更多背景信息,我们简要描述经典密度泛函理论、功率泛函理论和经典力学的变分原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验