Guo Huan, Li Yifu, Xu Yujie, Zhang Yi, Xiong Baichuan, Chen Haisheng
Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Rd, Haidian District, Beijing 100190, China.
University of Chinese Academy of Sciences, No.19(A) Yuquan Rd, Shijingshan District, Beijing 100049, China.
iScience. 2024 Jul 3;27(8):110393. doi: 10.1016/j.isci.2024.110393. eCollection 2024 Aug 16.
Symmetry analysis is a cutting-edge research approach in physics, yet its application in macroscopic energy systems remains limited. This study demonstrates its potential to provide valuable insights for a deeper understanding and development of thermodynamic cycles. This article first studies the symmetry of the proposed - diagrams and finds rich symmetries including reflection symmetry, translation symmetry, and rotational symmetry within Carnot cycles. Then, it emphasizes that one can use symmetry alone to prove that the highest efficiency for any cycle operating in a certain temperature range is the Carnot efficiency, without relying on the entropy concept in the second law of thermodynamics. Lastly, it is found that this symmetry analysis framework can also be used for thermal cycles with phase transitions, as exemplified by applying in Rankine cycles. This research not only contributes groundbreaking insights into unraveling the symmetry inherent in thermodynamic cycles, but also promotes symmetry analysis to be an alternative analysis mean.
对称性分析是物理学中一种前沿的研究方法,但其在宏观能量系统中的应用仍然有限。本研究展示了其为深入理解和发展热力循环提供有价值见解的潜力。本文首先研究了所提出的 - 图的对称性,并在卡诺循环中发现了丰富的对称性,包括反射对称、平移对称和旋转对称。然后,强调仅利用对称性就可以证明在一定温度范围内运行的任何循环的最高效率是卡诺效率,而无需依赖热力学第二定律中的熵概念。最后,发现这种对称性分析框架也可用于具有相变的热力循环,如在朗肯循环中的应用所示。这项研究不仅为揭示热力循环中固有的对称性提供了开创性的见解,还推动对称性分析成为一种替代分析方法。