Suppr超能文献

用于比较分析的数据库构建与管理的最佳实践。

Best practices for building and curating databases for comparative analyses.

作者信息

Schwanz Lisa E, Gunderson Alex, Iglesias-Carrasco Maider, Johnson Michele A, Kong Jacinta D, Riley Julia, Wu Nicholas C

机构信息

Evolution and Ecology Research Centre, and the School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2035, Australia.

School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.

出版信息

J Exp Biol. 2022 Mar 8;225(Suppl_1). doi: 10.1242/jeb.243295.

Abstract

Comparative analyses have a long history of macro-ecological and -evolutionary approaches to understand structure, function, mechanism and constraint. As the pace of science accelerates, there is ever-increasing access to diverse types of data and open access databases that are enabling and inspiring new research. Whether conducting a species-level trait-based analysis or a formal meta-analysis of study effect sizes, comparative approaches share a common reliance on reliable, carefully curated databases. Unlike many scientific endeavors, building a database is a process that many researchers undertake infrequently and in which we are not formally trained. This Commentary provides an introduction to building databases for comparative analyses and highlights challenges and solutions that the authors of this Commentary have faced in their own experiences. We focus on four major tips: (1) carefully strategizing the literature search; (2) structuring databases for multiple use; (3) establishing version control within (and beyond) your study; and (4) the importance of making databases accessible. We highlight how one's approach to these tasks often depends on the goal of the study and the nature of the data. Finally, we assert that the curation of single-question databases has several disadvantages: it limits the possibility of using databases for multiple purposes and decreases efficiency due to independent researchers repeatedly sifting through large volumes of raw information. We argue that curating databases that are broader than one research question can provide a large return on investment, and that research fields could increase efficiency if community curation of databases was established.

摘要

比较分析在宏观生态和进化方法中有着悠久的历史,用于理解结构、功能、机制和制约因素。随着科学发展步伐加快,获取各类数据和开放获取数据库的机会越来越多,这推动并激发了新的研究。无论是进行基于物种水平特征的分析,还是对研究效应大小进行正式的元分析,比较方法都共同依赖于可靠的、精心策划的数据库。与许多科学研究不同,构建数据库是许多研究人员很少进行且未接受过正式培训的过程。本评论介绍了为比较分析构建数据库的方法,并强调了本评论作者在自身经历中遇到的挑战及解决方案。我们重点关注四个主要要点:(1)精心规划文献检索;(2)构建可多次使用的数据库;(3)在研究内部(及外部)建立版本控制;(4)使数据库可访问的重要性。我们强调一个人处理这些任务的方法通常取决于研究目标和数据性质。最后,我们断言,策划单一问题数据库有几个缺点:它限制了数据库用于多种目的的可能性,并且由于独立研究人员反复筛选大量原始信息而降低了效率。我们认为,策划比一个研究问题更广泛的数据库能带来巨大的投资回报,并且如果建立数据库的社区策划,研究领域可以提高效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验