Suppr超能文献

基于自适应概率性脑图谱的脑 PET 图像统一空间标准化方法。

Unified spatial normalization method of brain PET images using adaptive probabilistic brain atlas.

机构信息

Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Eur J Nucl Med Mol Imaging. 2022 Jul;49(9):3073-3085. doi: 10.1007/s00259-022-05752-6. Epub 2022 Mar 8.

Abstract

PURPOSE

A unique advantage of the brain positron emission tomography (PET) imaging is the ability to image different biological processes with different radiotracers. However, the diversity of the brain PET image patterns also makes their spatial normalization challenging. Since structural MR images are not always available in the clinical practice, this study proposed a PET-only spatial normalization method based on adaptive probabilistic brain atlas.

METHODS

The proposed method (atlas-based method) consists of two parts, an adaptive probabilistic brain atlas generation algorithm, and a probabilistic framework for registering PET image to the generated atlas. To validate this method, the results of MRI-based method and template-based method (a widely used PET-only method) were treated as the gold standard and control, respectively. A total of 286 brain PET images, including seven radiotracers (FDG, PIB, FBB, AV-45, AV-1451, AV-133, [F]altanserin) and four groups of subjects (Alzheimer disease, Parkinson disease, frontotemporal dementia, and healthy control), were spatially normalized using the three methods. The results were then quantitatively compared by using correlation analysis, meta region of interest (meta-ROI) standardized uptake value ratio (SUVR) analysis, and statistical parametric mapping (SPM) analysis.

RESULTS

The Pearson correlation coefficient between the images computed by atlas-based method and the gold standard was 0.908 ± 0.005. The relative error of meta-ROI SUVR computed by atlas-based method was 2.12 ± 0.18%. Compared with template-based method, atlas-based method was also more consistent with the gold standard in SPM analysis.

CONCLUSION

The proposed method provides a unified approach to spatially normalize brain PET images of different radiotracers accurately without MR images. A free MATLAB toolbox for this method has been provided.

摘要

目的

脑正电子发射断层扫描(PET)成像的一个独特优势是能够使用不同的示踪剂对不同的生物过程进行成像。然而,脑 PET 图像模式的多样性也使得它们的空间标准化具有挑战性。由于在临床实践中并不总是有结构磁共振(MR)图像,因此本研究提出了一种基于自适应概率脑图谱的仅 PET 空间标准化方法。

方法

所提出的方法(基于图谱的方法)由两部分组成,即自适应概率脑图谱生成算法和将 PET 图像注册到生成的图谱的概率框架。为了验证该方法,将基于 MRI 的方法和基于模板的方法(一种广泛使用的仅 PET 方法)的结果分别作为金标准和对照。共对 286 张脑 PET 图像(包括七种示踪剂(FDG、PIB、FBB、AV-45、AV-1451、AV-133、[F]altanserin)和四组受试者(阿尔茨海默病、帕金森病、额颞叶痴呆和健康对照组)进行了空间标准化,使用三种方法进行。然后通过相关性分析、感兴趣区(ROI)标准化摄取比值(SUVr)分析和统计参数映射(SPM)分析对结果进行定量比较。

结果

基于图谱的方法计算的图像与金标准之间的 Pearson 相关系数为 0.908±0.005。基于图谱的方法计算的 meta-ROI SUVr 的相对误差为 2.12±0.18%。与基于模板的方法相比,基于图谱的方法在 SPM 分析中也与金标准更为一致。

结论

该方法提供了一种在没有 MR 图像的情况下准确地对不同示踪剂的脑 PET 图像进行空间标准化的统一方法。已提供了该方法的免费 MATLAB 工具箱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验