Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502285, India.
Anal Chem. 2022 Mar 22;94(11):4602-4609. doi: 10.1021/acs.analchem.1c04319. Epub 2022 Mar 8.
Simultaneous detection of multiple toxic gases in the air using room temperature gas sensors is significant in low-power environmental monitoring applications. However, the low-temperature resistive gas sensors are sensitive to more than one gas, and thus, an array of gas sensors and high energy-consuming machine learning algorithms are required to predict the concentrations of the individual gases in mixed target gas. Here, we report a computationally less intensive method to predict the composition of the target gases using linear gas sensors. A sensor array consisting of two ZnS resistive gas sensors biased at different voltages in conjunction with the superposition principle is used to predict the concentration of individual gases in the binary mixture of NH and CO present in the air. Further, the effect of humidity on response is mitigated by formulating the sensitivity of the sensors as a function of relative humidity. The proposed algorithm predicted the concentration of the individual gases in mixed gas with a maximum absolute error of ∼15% irrespective of humidity levels, which is practically allowed in most gas sensing applications. As the superposition principle is a low-power consuming technique, the proposed approach can be used in applications where trace levels of gases in mixed targets need to be detected with energy-efficient methods.
使用室温气体传感器同时检测空气中的多种有毒气体在低功耗环境监测应用中具有重要意义。然而,低温电阻式气体传感器对多种气体敏感,因此需要使用气体传感器阵列和高能耗的机器学习算法来预测混合目标气体中各气体的浓度。在这里,我们报告了一种使用线性气体传感器预测目标气体组成的计算量较小的方法。使用由两个在不同电压下偏置的 ZnS 电阻式气体传感器组成的传感器阵列,并结合叠加原理,用于预测空气中存在的 NH 和 CO 二元混合物中各气体的浓度。此外,通过将传感器的灵敏度表示为相对湿度的函数,减轻了湿度对响应的影响。所提出的算法预测了混合气体中各气体的浓度,最大绝对误差约为 15%,而与湿度水平无关,这在大多数气体传感应用中是实际允许的。由于叠加原理是一种低功耗技术,因此所提出的方法可用于需要使用节能方法检测混合目标中痕量气体的应用。