Suppr超能文献

常规 X 射线下胫骨软骨下骨纹理可预测全膝关节置换术。

Subchondral tibial bone texture of conventional X-rays predicts total knee arthroplasty.

机构信息

EA 4708- I3MTO Laboratory, University of Orleans, Orleans, France.

Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, Orleans, France.

出版信息

Sci Rep. 2022 May 18;12(1):8327. doi: 10.1038/s41598-022-12083-x.

Abstract

Lacking disease-modifying osteoarthritis drugs (DMOADs) for knee osteoarthritis (KOA), Total Knee Arthroplasty (TKA) is often considered an important clinical outcome. Thus, it is important to determine the most relevant factors that are associated with the risk of TKA. The present study aims to develop a model based on a combination of X-ray trabecular bone texture (TBT) analysis, and clinical and radiological information to predict TKA risk in patients with or at risk of developing KOA. This study involved 4382 radiographs, obtained from the OsteoArthritis Initiative (OAI) cohort. Cases were defined as patients with TKA on at least one knee prior to the 108-month follow-up time point and controls were defined as patients who had never undergone TKA. The proposed TKA-risk prediction model, combining TBT parameters and Kellgren-Lawrence (KL) grades, was performed using logistic regression. The proposed model achieved an AUC of 0.92 (95% Confidence Interval [CI] 0.90, 0.93), while the KL model achieved an AUC of 0.86 (95% CI 0.84, 0.86; p < 0.001). This study presents a new TKA prediction model with a good performance permitting the identification of at risk patient with a good sensitivy and specificity, with a 60% increase in TKA case prediction as reflected by the recall values.

摘要

由于缺乏治疗膝关节骨关节炎(KOA)的疾病修饰药物(DMOADs),全膝关节置换术(TKA)通常被认为是一种重要的临床结果。因此,确定与 TKA 风险相关的最相关因素非常重要。本研究旨在开发一种基于 X 射线小梁骨纹理(TBT)分析以及临床和影像学信息的模型,以预测有或有 KOA 发展风险的患者的 TKA 风险。本研究涉及来自 OsteoArthritis Initiative(OAI)队列的 4382 张射线照片。病例定义为在 108 个月随访时间点之前至少有一侧膝关节接受 TKA 的患者,对照组定义为从未接受过 TKA 的患者。使用逻辑回归对结合 TBT 参数和 Kellgren-Lawrence(KL)分级的 TKA 风险预测模型进行了评估。提出的 TKA 风险预测模型的 AUC 为 0.92(95%置信区间 [CI] 0.90,0.93),而 KL 模型的 AUC 为 0.86(95% CI 0.84,0.86;p < 0.001)。本研究提出了一种具有良好性能的新的 TKA 预测模型,可以识别高危患者,具有良好的敏感性和特异性,召回值反映 TKA 病例预测增加了 60%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a47/9117303/9c94bd2875b5/41598_2022_12083_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验