Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom.
J Neurosci. 2022 Apr 13;42(15):3197-3215. doi: 10.1523/JNEUROSCI.1622-21.2022. Epub 2022 Mar 8.
The multiple demand (MD) system is a network of fronto-parietal brain regions active during the organization and control of diverse cognitive operations. It has been argued that this activation may be a nonspecific signal of task difficulty. However, here we provide convergent evidence for a causal role for the MD network in the "simple task" of automatic auditory change detection, through the impairment of top-down control mechanisms. We employ independent structure-function mapping, dynamic causal modeling (DCM), and frequency-resolved functional connectivity analyses of MRI and magnetoencephalography (MEG) from 75 mixed-sex human patients across four neurodegenerative syndromes [behavioral variant fronto-temporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), posterior cortical atrophy (PCA), and Alzheimer's disease mild cognitive impairment with positive amyloid imaging (ADMCI)] and 48 age-matched controls. We show that atrophy of any MD node is sufficient to impair auditory neurophysiological response to change in frequency, location, intensity, continuity, or duration. There was no similar association with atrophy of the cingulo-opercular, salience or language networks, or with global atrophy. MD regions displayed increased functional but decreased effective connectivity as a function of neurodegeneration, suggesting partially effective compensation. Overall, we show that damage to any of the nodes of the MD network is sufficient to impair top-down control of sensation, providing a common mechanism for impaired change detection across dementia syndromes. Previous evidence for fronto-parietal networks controlling perception is largely associative and may be confounded by task difficulty. Here, we use a preattentive measure of automatic auditory change detection [mismatch negativity (MMN) magnetoencephalography (MEG)] to show that neurodegeneration in any frontal or parietal multiple demand (MD) node impairs primary auditory cortex (A1) neurophysiological response to change through top-down mechanisms. This explains why the impaired ability to respond to change is a core feature across dementias, and other conditions driven by brain network dysfunction, such as schizophrenia. It validates theoretical frameworks in which neurodegenerating networks upregulate connectivity as partially effective compensation. The significance extends beyond network science and dementia, in its construct validation of dynamic causal modeling (DCM), and human confirmation of frequency-resolved analyses of animal neurodegeneration models.
多需求(MD)系统是一个额顶叶脑区网络,在组织和控制各种认知操作中活跃。有人认为这种激活可能是任务难度的非特异性信号。然而,在这里,我们通过损害自上而下的控制机制,为 MD 网络在自动听觉变化检测的“简单任务”中提供了因果关系的证据。我们采用独立的结构-功能映射、动态因果建模(DCM)以及来自 75 名混合性别患者(4 种神经退行性综合征[行为变异额颞叶痴呆(bvFTD)、非流利型原发性进行性失语症(nfvPPA)、后部皮质萎缩(PCA)和阿尔茨海默病伴正淀粉样成像的轻度认知障碍(ADMCI)]和 48 名年龄匹配的对照者的 MRI 和脑磁图(MEG)的频率分辨功能连接分析,提供了证据。我们表明,MD 节点的任何萎缩都足以损害听觉神经生理对频率、位置、强度、连续性或持续时间变化的反应。与扣带前回-操作网络、突显或语言网络的萎缩或与全局萎缩没有类似的关联。MD 区域显示出随着神经退行性变而增加的功能但降低的有效连接,表明部分有效补偿。总体而言,我们表明,MD 网络的任何节点的损伤足以损害感觉的自上而下控制,为跨痴呆综合征的受损变化检测提供了共同的机制。以前关于控制感知的额顶叶网络的证据主要是关联的,可能会因任务难度而混淆。在这里,我们使用自动听觉变化检测的预注意测量(失匹配负波(MMN)脑磁图(MEG))来表明,任何额叶或顶叶多需求(MD)节点的神经退行性变都会通过自上而下的机制损害初级听觉皮层(A1)对变化的神经生理反应。这解释了为什么对变化的反应能力受损是痴呆症以及其他由大脑网络功能障碍驱动的疾病(如精神分裂症)的核心特征。它验证了理论框架,即神经退行性网络上调连接作为部分有效补偿。其意义超出了网络科学和痴呆症的范围,它对动态因果建模(DCM)的构建验证以及对动物神经退行性变模型的频率分辨分析的人类确认具有重要意义。