Suppr超能文献

作为扫描探针显微镜中原位电极的超浅掺杂剂分布

Ultra-shallow dopant profiles as in-situ electrodes in scanning probe microscopy.

作者信息

Kölker Alexander, Wolf Martin, Koch Matthias

机构信息

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.

出版信息

Sci Rep. 2022 Mar 8;12(1):3783. doi: 10.1038/s41598-022-07551-3.

Abstract

The application of nano materials to control advanced functionality in semiconductor devices has reached the atomic scale. At this dimension the exact chemical and structural composition of a device is crucial for its performance. Rapid inspection techniques are required to find the optimal combination among numerous materials. However, to date the earliest electrical inspection is carried out after multiple fabrication processes. This delay makes the fabrication of atomically designed components very challenging. Here, we propose a sample system to chemically characterize nanoscale devices in-operando. We introduce ion-implanted contacts which embedded in the sample serve as additional electrodes to carry out scanning gate experiments. We demonstrate that the presence of these electrodes does not deteriorate the surface quality. The potential of this approach is highlighted by controlling the charge state of single dangling bonds on the silicon surface. Apart from our novel sample holder, the experimental setup was not modified making this approach compatible to most commercial low-temperature scanning probe microscopes. For silicon based devices, the versatility of this method is a promising avenue to gain a detailed and rapid understanding of functionalized atomic devices and quantum interactions at the atomic level.

摘要

纳米材料在控制半导体器件先进功能方面的应用已达到原子尺度。在这个维度上,器件的确切化学和结构组成对其性能至关重要。需要快速检测技术来在众多材料中找到最佳组合。然而,迄今为止,最早的电学检测是在多次制造工艺之后进行的。这种延迟使得原子级设计组件的制造极具挑战性。在此,我们提出一种样品系统,用于对纳米级器件进行原位化学表征。我们引入了嵌入样品中的离子注入接触,作为进行扫描栅极实验的额外电极。我们证明这些电极的存在不会降低表面质量。通过控制硅表面单个悬空键的电荷状态,突出了这种方法的潜力。除了我们新颖的样品架外,实验装置未作修改,使得这种方法与大多数商用低温扫描探针显微镜兼容。对于基于硅的器件,这种方法的多功能性是在原子水平上详细且快速理解功能化原子器件和量子相互作用的一条有前途的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2331/8904578/3c6d2ab1fd26/41598_2022_7551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验