Faculty of Computers and Information, Minia University, Minia, Egypt.
Sci Rep. 2023 Jun 5;13(1):9094. doi: 10.1038/s41598-023-36066-8.
Image segmentation is the process of separating pixels of an image into multiple classes, enabling the analysis of objects in the image. Multilevel thresholding (MTH) is a method used to perform this task, and the problem is to obtain an optimal threshold that properly segments each image. Methods such as the Kapur entropy or the Otsu method, which can be used as objective functions to determine the optimal threshold, are efficient in determining the best threshold for bi-level thresholding; however, they are not effective for MTH due to their high computational cost. This paper integrates an efficient method for MTH image segmentation called the heap-based optimizer (HBO) with opposition-based learning termed improved heap-based optimizer (IHBO) to solve the problem of high computational cost for MTH and overcome the weaknesses of the original HBO. The IHBO was proposed to improve the convergence rate and local search efficiency of search agents of the basic HBO, the IHBO is applied to solve the problem of MTH using the Otsu and Kapur methods as objective functions. The performance of the IHBO-based method was evaluated on the CEC'2020 test suite and compared against seven well-known metaheuristic algorithms including the basic HBO, salp swarm algorithm, moth flame optimization, gray wolf optimization, sine cosine algorithm, harmony search optimization, and electromagnetism optimization. The experimental results revealed that the proposed IHBO algorithm outperformed the counterparts in terms of the fitness values as well as other performance indicators, such as the structural similarity index (SSIM), feature similarity index (FSIM), peak signal-to-noise ratio. Therefore, the IHBO algorithm was found to be superior to other segmentation methods for MTH image segmentation.
图像分割是将图像的像素分成多个类别的过程,从而能够分析图像中的对象。多阈值分割(MTH)是执行此任务的一种方法,问题是获得适当分割每个图像的最优阈值。可以用作确定最优阈值的目标函数的 Kapur 熵或 Otsu 方法在确定双阈值的最佳阈值方面非常有效;然而,由于其计算成本高,它们对于 MTH 并不有效。本文将一种称为基于堆的优化器(HBO)的高效 MTH 图像分割方法与基于反对的学习相结合,称为改进的基于堆的优化器(IHBO),以解决 MTH 的计算成本高的问题,并克服原始 HBO 的弱点。提出 IHBO 是为了提高基本 HBO 的搜索代理的收敛速度和局部搜索效率,将 IHBO 应用于使用 Otsu 和 Kapur 方法作为目标函数的 MTH 问题。基于 IHBO 的方法的性能在 CEC'2020 测试套件上进行了评估,并与七种著名的元启发式算法(包括基本 HBO、沙蝇群算法、 moth 火焰优化、灰狼优化、正弦余弦算法、和声搜索优化和电磁优化)进行了比较。实验结果表明,所提出的 IHBO 算法在适应度值以及其他性能指标(如结构相似性指数(SSIM)、特征相似性指数(FSIM)、峰值信噪比)方面优于同类算法。因此,发现 IHBO 算法在 MTH 图像分割方面优于其他分割方法。