Suppr超能文献

化学场:在多相纳米晶体中引导原子迁移

Chemical Fields: Directing Atom Migration in the Multiphasic Nanocrystal.

作者信息

Jun Minki, Kwon Taehyun, Son Yunchang, Kim Byeongyoon, Lee Kwangyeol

机构信息

Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea.

出版信息

Acc Chem Res. 2022 Apr 5;55(7):1015-1024. doi: 10.1021/acs.accounts.1c00745. Epub 2022 Mar 9.

Abstract

ConspectusAtoms in a bulk solid phase are usually trapped to fixed positions and can change their position only under certain conditions (e.g., at a melting point) due to the high energy barrier of migration between positions within the crystal lattice. Contrary to the atoms in the bulk solid phase, however, atoms in nanoparticles can migrate and change their local positions rather easily, enabled by the high surface energies. The energy states of surface atoms of nanoparticles can be altered by surface-binding moieties, which in turn influence the intrananoparticle migration of atoms at the subsurface of nanoparticles. In 2008, this possibility of intrananoparticle migration was demonstrated with RhPd alloy nanoparticles under the different gas environments of reductive CO or oxidative NO. We envisaged that the explosive expansion of well-defined, multiphasic nanoparticle libraries might be realized by specifically dictating the atom migration direction, by modulating the energy state of specific atoms in the multiphasic nanocrystals. The nanoparticle surface energy is a function of a myriad of factors, namely, surface binding moiety, structural features affecting coordination number of atoms such as nanoparticle geometry, steps, and kinks, and the existence of heterointerface with lattice mismatch. Therefore, all these factors affecting atom energy state in the nanoparticle, categorically termed as "chemical field" (CF), can serve as the driving force for purposeful directional movement of atoms within nanoparticles and subsequent reaction. Geometrically well-defined multiphasic nanocrystals present great promises toward various applications with special emphasis on catalysis and thus are worthy synthetic targets. In recent years, we have demonstrated that manipulation of CFs is an effective synthetic strategy for a variety of geometrically well-defined multiphasic nanocrystals. Herein, we classified multiphasic nanocrystals into metallic alloy systems and ionic systems (metal compounds) because the modes of CF are rather different between these two systems. The migration-directing CFs for neutral metallic atoms are mostly based on the local distribution of elements, degree of alloying, or highly energetic structural features. On the other hand, for the ionic system, structural parameters originating from the discrepancy between cations and anions should be more considered; ionic radii, phase stability, lattice strain, anionic frameworks, cation vacancies, etc. can react as CFs affecting atom migration behavior in the multiphasic ionic nanocrystals. We expect that the limits and potentials of CF-based synthesis of multiphasic nanocrystals described in this work will open a wide avenue to diverse material compositions and geometries, which have been difficult or impossible to approach via conventional nanoparticle synthesis schemes.

摘要

概述

大块固相中的原子通常被困在固定位置,由于晶格内位置之间迁移的高能垒,只有在特定条件下(例如熔点)才能改变其位置。然而,与大块固相中的原子相反,纳米颗粒中的原子由于高表面能而能够相当容易地迁移并改变其局部位置。纳米颗粒表面原子的能量状态可以通过表面结合部分改变,这反过来又会影响纳米颗粒亚表面原子在颗粒内的迁移。2008年,在还原性CO或氧化性NO的不同气体环境下,用RhPd合金纳米颗粒证明了颗粒内迁移的这种可能性。我们设想,通过特异性地控制原子迁移方向,通过调节多相纳米晶体中特定原子的能量状态,可以实现定义明确的多相纳米颗粒库的爆炸性扩展。纳米颗粒表面能是众多因素的函数,即表面结合部分、影响原子配位数的结构特征(如纳米颗粒几何形状、台阶和扭结)以及存在晶格失配的异质界面。因此,所有这些影响纳米颗粒中原子能量状态的因素,统称为“化学场”(CF),可以作为纳米颗粒内原子有目的定向移动及后续反应的驱动力。几何形状明确的多相纳米晶体在各种应用中,特别是在催化方面,展现出巨大的潜力,因此是值得合成的目标。近年来,我们已经证明,操纵化学场是合成各种几何形状明确的多相纳米晶体的有效策略。在此,我们将多相纳米晶体分为金属合金体系和离子体系(金属化合物),因为这两个体系中化学场的模式有很大不同。中性金属原子的迁移导向化学场主要基于元素的局部分布、合金化程度或高能结构特征。另一方面,对于离子体系,应更多考虑阳离子和阴离子之间差异产生的结构参数;离子半径、相稳定性、晶格应变、阴离子骨架、阳离子空位等可以作为影响多相离子纳米晶体中原子迁移行为的化学场。我们期望,本文所述基于化学场合成多相纳米晶体的局限性和潜力将为各种材料组成和几何形状开辟一条广阔的途径,而这些通过传统纳米颗粒合成方案很难或无法实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验