Wei Pingping, Chen Sai, Luo Ran, Sun Guodong, Wu Kexin, Fu Donglong, Zhao Zhi-Jian, Pei Chunlei, Yan Ning, Gong Jinlong
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University; Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
Nat Commun. 2024 Sep 17;15(1):8157. doi: 10.1038/s41467-024-52518-9.
Intermetallic nanoparticles (NPs) possess significant potentials for catalytic applications, yet their production presents challenges as achieving the disorder-to-order transition during the atom ordering process involves overcoming a kinetic energy barrier. Here, we demonstrate a robust approach utilizing atomic gas-migration for the in-situ synthesis of stable and homogeneous intermetallic alloys for propane dehydrogenation (PDH). This approach relies on the physical mixture of two separately supported metal species in one reactor. The synthesized platinum-zinc intermetallic catalysts demonstrate exceptional stability for 1300 h in continuous propane dehydrogenation under industrially relevant industrial conditions, with extending 95% propylene selectivity and propane conversions approaching thermodynamic equilibrium values at 550-600 C. In situ characterizations and density functional theory/molecular dynamics simulation reveal Zn atoms adsorb on the particle surface and then diffuse inward, aiding in the formation of ultrasmall and highly ordered intermetallic alloys. This in-situ gas-migration strategy is applicable to a wide range of intermetallic systems.
金属间化合物纳米颗粒(NPs)在催化应用方面具有巨大潜力,然而其制备面临挑战,因为在原子有序化过程中实现从无序到有序的转变涉及克服动能障碍。在此,我们展示了一种利用原子气体迁移原位合成用于丙烷脱氢(PDH)的稳定且均匀的金属间化合物合金的稳健方法。该方法依赖于在一个反应器中两种分别负载的金属物种的物理混合。合成的铂 - 锌金属间化合物催化剂在工业相关条件下连续丙烷脱氢反应中表现出1300小时的出色稳定性,在550 - 600℃下具有95%的丙烯选择性且丙烷转化率接近热力学平衡值。原位表征以及密度泛函理论/分子动力学模拟表明,锌原子吸附在颗粒表面然后向内扩散,有助于形成超小且高度有序的金属间化合物合金。这种原位气体迁移策略适用于广泛的金属间化合物体系。