Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093.
Department of Chemical Engineering, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2112109119. doi: 10.1073/pnas.2112109119. Epub 2022 Mar 9.
SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.
意义 直接乙醇燃料电池由于其比氢更高的质量能量密度和比甲醇更低的毒性等优势,作为便携式电源越来越受到关注。然而,要实现完全电氧化以生成每乙醇 12 个电子是具有挑战性的,这导致燃料利用率低。本文通过单原子修饰来构建高效催化剂,报告了完全乙醇电氧化。结合电化学测量、原位表征和密度泛函理论计算,揭示了单 Rh 原子和 Pt 纳米立方体的协同效应,并确定了导致选择性 C-C 键断裂以将乙醇氧化为 CO 的反应途径。本研究提供了一种独特的单原子方法来调节对复杂电催化反应的活性和选择性。