Luo Shuiping, Zhang Long, Liao Yujia, Li Lanxi, Yang Qi, Wu Xiaotong, Wu Xiaoyu, He Dongsheng, He Chunyong, Chen Wen, Wu Qilong, Li Mingrui, Hensen Emiel J M, Quan Zewei
Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.
Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, MB, 5600, The Netherlands.
Adv Mater. 2021 Apr;33(17):e2008508. doi: 10.1002/adma.202008508. Epub 2021 Mar 22.
The rational design and control of electrocatalysts at single-atomic sites could enable unprecedented atomic utilization and catalytic properties, yet it remains challenging in multimetallic alloys. Herein, the first example of isolated Rh atoms on ordered PtBi nanoplates (PtBi-Rh ) by atomic galvanic replacement, and their subsequent transformation into a tensile-strained Pt-Rh single-atom alloy (PtBi@PtRh ) via electrochemical dealloying are presented. Benefiting from the Rh -tailored Pt (110) surface with tensile strain, the PtBi@PtRh nanoplates exhibit record-high and all-round superior electrocatalytic performance including activity, selectivity, stability, and anti-poisoning ability toward ethanol oxidation in alkaline electrolytes. Density functional theory calculations reveal the synergism between effective Rh and tensile strain in boosting the adsorption of ethanol and key surface intermediates and the CC bond cleavage of the intermediates. The facile synthesis of the tensile-strained single-atom alloy provides a novel strategy to construct model nanostructures, accelerating the development of highly efficient electrocatalysts.
在单原子位点对电催化剂进行合理设计和控制能够实现前所未有的原子利用率和催化性能,但在多金属合金中仍具有挑战性。在此,本文展示了通过原子电置换在有序的PtBi纳米片(PtBi-Rh)上制备孤立Rh原子的首个实例,以及随后通过电化学脱合金将其转变为拉伸应变的Pt-Rh单原子合金(PtBi@PtRh)。受益于具有拉伸应变的Rh定制的Pt(110)表面,PtBi@PtRh纳米片在碱性电解质中对乙醇氧化表现出创纪录的高且全面优异的电催化性能,包括活性、选择性、稳定性和抗中毒能力。密度泛函理论计算揭示了有效Rh与拉伸应变之间的协同作用,可促进乙醇和关键表面中间体的吸附以及中间体的CC键断裂。拉伸应变单原子合金的简便合成提供了一种构建模型纳米结构的新策略,加速了高效电催化剂的开发。