Suppr超能文献

基于模型的机器学习在磁场中小光子场横向剂量分布恢复中的应用。

Model-based machine learning for the recovery of lateral dose profiles of small photon fields in magnetic field.

机构信息

University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.

Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany.

出版信息

Phys Med Biol. 2022 Apr 4;67(8). doi: 10.1088/1361-6560/ac5bfa.

Abstract

. To investigate the feasibility to train artificial neural networks (NN) to recover lateral dose profiles from detector measurements in a magnetic field.. A novel framework based on a mathematical convolution model has been proposed to generate measurement-less training dataset. 2D dose deposition kernels and detector lateral fluence response functions of two air-filled ionization chambers and two diode-type detectors have been simulated without magnetic field and for magnetic field = 0.35 and 1.5 T. Using these convolution kernels, training dataset consisting pairs of dose profilesDx,yand signal profilesMx,ywere computed for a total of 108 2D photon fluence profilesψ(x,y)(80% training/20% validation). The NN were tested using three independent datasets, where the second test dataset has been obtained from simulations using realistic phase space files of clinical linear accelerator and the third test dataset was measured at a conventional linac equipped with electromagnets. Main. The convolution kernels show magnetic field dependence due to the influence of the Lorentz force on the electron transport in the water phantom and detectors. The NN show good performance during training and validation with mean square error reaching a value of 1e-6 or smaller. The corresponding correlation coefficientsreached the value of 1 for all models indicating an excellent agreement between expectedDx,yand predictedDpredx,y.The comparisons betweenDx,yandDpredx,yusing the three test datasets resulted in gamma indices (1 mm/1% global) <1 for all evaluated data points.. Two verification approaches have been proposed to warrant the mathematical consistencies of the NN outputs. Besides offering a correction strategy not existed so far for relative dosimetry in a magnetic field, this work could help to raise awareness and to improve understanding on the distortion of detector's signal profiles by a magnetic field.

摘要

. 研究训练人工神经网络 (NN) 从磁场中的探测器测量中恢复横向剂量分布的可行性。.. 提出了一种基于数学卷积模型的新框架,用于生成无测量的训练数据集。已经模拟了两个充满空气的电离室和两个二极管型探测器的 2D 剂量沉积核和探测器横向荧光响应函数,没有磁场,以及磁场 = 0.35 和 1.5 T。使用这些卷积核,为总共 108 个二维光子荧光分布ψ(x,y)(80% 训练/20% 验证)计算了由剂量分布 Dx,y 和信号分布 Mx,y 组成的训练数据集对。使用三个独立的数据集对 NN 进行了测试,其中第二个测试数据集是使用临床直线加速器的实际相空间文件进行模拟获得的,第三个测试数据集是在配备电磁铁的常规直线加速器上测量的。主要。卷积核由于洛伦兹力对水模和探测器中电子输运的影响而表现出磁场依赖性。NN 在训练和验证过程中表现良好,均方误差达到 1e-6 或更小。所有模型的相关系数均达到 1,表明预期的 Dx,y 和预测的 Dpredx,y 之间具有极好的一致性。使用三个测试数据集对 Dx,y 和 Dpredx,y 进行比较,对于所有评估的数据点,伽玛指数(1 mm/1%全局)均<1。提出了两种验证方法来保证 NN 输出的数学一致性。除了为磁场中的相对剂量学提供迄今为止不存在的校正策略外,这项工作还有助于提高对磁场对探测器信号分布的失真的认识和理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验