Suppr超能文献

用于增强调强放射治疗计划的患者特异性质量保证的统一深度学习框架。

A unified deep-learning framework for enhanced patient-specific quality assurance of intensity-modulated radiation therapy plans.

作者信息

Looe Hui Khee, Reinert Philipp, Carta Julius, Poppe Björn

机构信息

University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.

出版信息

Med Phys. 2025 Mar;52(3):1878-1892. doi: 10.1002/mp.17601. Epub 2024 Dec 24.

Abstract

BACKGROUND

Modern radiation therapy techniques, such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), use complex fluence modulation strategies to achieve optimal patient dose distribution. Ensuring their accuracy necessitates rigorous patient-specific quality assurance (PSQA), traditionally done through pretreatment measurements with detector arrays. While effective, these methods are labor-intensive and time-consuming. Independent calculation-based methods leveraging advanced dose algorithms provide a reduced workload but cannot account for machine performance during delivery.

PURPOSE

This study introduces a novel unified deep-learning (DL) framework to enhance PSQA. The framework can combine the strengths of measurement- and calculation-based approaches.

METHODS

A comprehensive artificial training dataset, comprising 400,000 samples, was generated based on a rigorous mathematical model that describes the physical processes of radiation transport and interaction within both the medium and detector. This artificial data was used to pretrain the DL models, which were subsequently fine-tuned with a measured dataset of 400 IMRT segments to capture the machine-specific characteristics. Additional measurements of five IMRT plans were used as the unseen test dataset. Within the unified framework, a forward prediction model uses plan parameters to predict the measured dose distributions, while the backward prediction model reconstructs these parameters from actual measurements. The former enables a detailed control point (CP)-wise analysis. At the same time, the latter facilitates the reconstruction of treatment plans from the measurements and, subsequently, dose recalculation in the treatment planning system (TPS), as well as an independent second check software (VERIQA). This method has been tested with an OD 1600 SRS and an OD 1500 detector array with distinct spatial resolution and detector arrangement in combination with a dedicated upsampling model for the latter.

RESULTS

The final models could deliver highly accurate predictions of the measurements in the forward direction and the actual delivered plan parameters in the backward direction. In the forward direction, the test plans reached median gamma passing rates better than 94% for the OD 1600 SRS measurements. The upsampled OD 1500 measurements show similar performance with similar median gamma passing rates but a slightly higher variability. The 3D gamma passing rates from the comparisons between the original and reconstructed dose distributions in patients lie between 95.4% and 98.2% for the OD 1600 SRS and 94.7% and 98.5% for the interpolated OD 1500 measurements. The dose volume histograms (DVH) of the original and the reconstructed plans, recalculated in both the TPS and VERIQA, were evaluated for the organs at risk and targets based on clinical protocols and showed no clinically relevant deviations.

CONCLUSIONS

The flexibility of the implemented model architecture allows its adaptability to other delivery techniques and measurement modalities. Its utilization also reduces the requirements of the measurement devices. The proposed unified framework could play a decisive role in automating QA workflow, especially in the context of real-time adaptive radiation therapy (ART).

摘要

背景

现代放射治疗技术,如调强放射治疗(IMRT)和容积调强弧形治疗(VMAT),采用复杂的通量调制策略来实现最佳的患者剂量分布。确保其准确性需要严格的针对患者的质量保证(PSQA),传统上是通过使用探测器阵列进行治疗前测量来完成的。虽然这些方法有效,但劳动强度大且耗时。利用先进剂量算法的基于独立计算的方法工作量较小,但无法考虑机器在治疗过程中的性能。

目的

本研究引入一种新颖的统一深度学习(DL)框架以增强PSQA。该框架可以结合基于测量和基于计算的方法的优势。

方法

基于一个严格的数学模型生成了一个包含400,000个样本的综合人工训练数据集,该模型描述了辐射在介质和探测器内的传输和相互作用的物理过程。这些人工数据用于预训练DL模型,随后使用400个IMRT射野的测量数据集对其进行微调,以捕捉特定机器的特征。另外五个IMRT计划的测量数据用作未知测试数据集。在统一框架内,前向预测模型使用计划参数来预测测量的剂量分布,而后向预测模型从实际测量中重建这些参数。前者实现了详细的逐控制点(CP)分析。同时,后者有助于从测量中重建治疗计划,随后在治疗计划系统(TPS)中进行剂量重新计算,以及独立的二次检查软件(VERIQA)。该方法已结合具有不同空间分辨率和探测器布置的OD 1600 SRS和OD 1500探测器阵列进行了测试,并为后者配备了专用的上采样模型。

结果

最终模型在前向方向上能够对测量值进行高度准确的预测,在后向方向上能够对实际执行的计划参数进行准确预测。在前向方向上,对于OD 1600 SRS测量,测试计划的中位伽马通过率优于94%。上采样后的OD 1500测量显示出类似的性能,中位伽马通过率相似,但变异性略高。患者原始剂量分布与重建剂量分布之间比较的三维伽马通过率,对于OD 1600 SRS在95.4%至98.2%之间,对于插值后的OD 1500测量在94.7%至98.5%之间。根据临床方案对在TPS和VERIQA中重新计算的原始计划和重建计划的剂量体积直方图(DVH)进行了评估,结果显示在危及器官和靶区方面没有临床相关偏差。

结论

所实施的模型架构的灵活性使其能够适应其他治疗技术和测量方式。其应用还降低了对测量设备的要求。所提出的统一框架可以在QA工作流程自动化中发挥决定性作用,特别是在实时自适应放射治疗(ART)的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07d/11880640/794eba908589/MP-52-1878-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验